Abstract:
A method of making an OLED display having a plurality of OLED devices includes providing a plurality of OLED devices on a substrate, such OLED devices sharing a common light-transmissive electrode; forming a patterned conductive layer structure over the common light-transmissive electrode to define wells in alignment with emissive areas of one or more OLED devices; and providing optical material into one or more wells
Abstract:
A gelatin-based substrate for fabricating protein arrays, the substrate comprising: gelatin having at least one surface; a polymer scaffold affixed to the gelatin surface; wherein the polymer in the scaffold is rich in reactive units capable of immobilizing proteins.
Abstract:
Disclosed is media for receiving jetted ink comprising a support bearing a predetermined array of three dimensional cells composed of hydrophobic walls and having a hydrophilic base, the cross-section of the cells parallel to the support being of a size sufficiently small so as to increase the range of color density gradations attainable.
Abstract:
A nozzle plate for an ink jet printhead, the nozzle plate having the following layers in the order recited: a) a first monomolecular layer of an organic material having first and second functional groups, the first functional group of the first monomolecular layer being bound to the surface of the nozzle plate, and the second functional group of the first monomolecular layer being bound to a second monomolecular layer, and b) the second monomolecular layer of an organic material having first and second functional groups, the first functional group of the second monomolecular layer being bound to the second functional group of the first monomolecular layer, and the second functional group of the second monomolecular layer is an anti-wetting group.
Abstract:
The present invention provides a coating that emits magnetic resonance signals and a method for coating medical devices therewith. The coating includes a paramagnetic metal ion-containing polymer complex that facilitates diagnostic and therapeutic techniques by readily visualizing medical devices coated with the complex.
Abstract:
A method of forming a pattern of electrical conductors on a receiving substrate (110) comprises forming metal nanoparticles of a conductive material. A donor substrate (45) is formed. A layer of release material (75) is deposited on a first side of the donor substrate. The metal nanoparticles are deposited on the release material. The metal nanoparticulate layer are placed in contact with the receiving substrate. A pattern is written on a sandwich formed by the donor substrate and the receiving substrate, causing metal nanoparticles from the nanoparticulate layer (90) to anneal and transfer to the receiving substrate to form the pattern of electrical conductors on the receiving substrate.
Abstract:
Methods for forming nanoparticles under commercially attractive conditions. The nanoparticles can have very small size and high degree of monodispersity. Low temperature sintering is possible, and highly conductive films can be made. Semiconducting and electroluminescent films can be also made. One embodiment provides a method comprising: (a) providing a first mixture comprising at least one nanoparticle precursor and at least one first solvent for the nanoparticle precursor, wherein the nanoparticle precursor comprises a salt comprising a cation comprising a metal; (b) providing a second mixture comprising at least one reactive moiety reactive for the nanoparticle precursor and at least one second solvent for the reactive moiety, wherein the second solvent phase separates when it is mixed with the first solvent; and (c) combining said first and second mixtures in the presence of a surface stabilizing agent, wherein upon combination the first and second mixtures phase-separate and nanoparticles are formed.
Abstract:
A method of forming a pattern of electrical conductors on a receiving substrate (110) comprises forming metal nanoparticles of a conductive material. A donor substrate (45) is formed. A layer of release material (75) is deposited on a first side of the donor substrate. The metal nanoparticles are deposited on the release material. The metal nanoparticulate layer are placed in contact with the receiving substrate. A pattern is written on a sandwich formed by the donor substrate and the receiving substrate, causing metal nanoparticles from the nanoparticulate layer (90) to anneal and transfer to the receiving substrate to form the pattern of electrical conductors on the receiving substrate.
Abstract:
A thin film transistor comprises a layer of organic semiconductor material and spaced apart first and second contact means or electrodes in contact with said material. A multilayer dielectric comprises a first dielectric layer having a thickness of 200 nm to 500 nm, in contact with the gate electrode and a second dielectric layer in contact with the organic semiconductor material, and wherein the first dielectric layer comprise a continuous first polymeric material having a relatively higher dielectric constant less than 10 and the second dielectric layer comprises a continuous second non-fluorinated polymeric material having a relatively lower dielectric constant greater than 2.3. Further disclosed is a process for fabricating such a thin film transistor device, preferably by sublimation or solution-phase deposition onto a substrate, wherein the substrate temperature is no more than 100° C.
Abstract:
A method for coating a micro-electromechanical systems device with a silane coupling agent by a) mixing the silane coupling agent with a low volatile matrix material in a coating source material container; b) placing the micro-electromechanical systems device in a vacuum deposition chamber which in connection with the coating source material container; c) pumping the vacuum deposition chamber to a predetermined pressure; and maintaining the pressure of the vacuum deposition chamber for a period of time in order to chemically vapor deposit the silane coupling agent on the surface of the micro-electromechanical systems device.