Abstract:
Processes increase light absorption into silicon wafers by selectively changing the reflective properties of the bottom portions of light trapping cavity features. Modification of light trapping features includes: deepening the bottom portion, increasing the curvature of the bottom portion, and roughening the bottom portion, all accomplished through etching. Modification may also be by the selective addition of material at the bottom of cavity features. Different types of features in the same wafers may be treated differently. Some may receive a treatment that improves light trapping while another is deliberately excluded from such treatment. Some may be deepened, some roughened, some both. No alignment is needed to achieve this selectively. The masking step achieves self-alignment to previously created light trapping features due to softening and deformation in place.
Abstract:
The present inventions relate to the formation of a thin polymer film on a substrate. Apparatus is described for transforming a solid polymer resist into an aerosol of small particles, electrostatically charging and depositing the particles onto a substrate, and flowing the particles into a continuous layer. Apparatus is further described for transforming solid resist into an aerosol of small particles by heating the resist to form a low viscosity liquid such as is compatible with nebulization and applying the techniques of jet or impact nebulization and aerosol particle sizing to form the aerosol. A method is further described of using ionized gas to confer charge onto the aerosol particles and using a progression of charging devices establish an electric field directing the flow of charged particles to the substrate. The progression of charging devices and associated apparatus results in high collection efficiency for the aerosol particles.
Abstract:
The present inventions relate to the formation of a thin polymer film on a substrate. Apparatus is described for transforming a solid polymer resist into an aerosol of small particles, electrostatically charging and depositing the particles onto a substrate, and flowing the particles into a continuous layer. Apparatus is further described for transforming solid resist into an aerosol of small particles by heating the resist to form a low viscosity liquid such as is compatible with nebulization and applying the techniques of jet or impact nebulization and aerosol particle sizing to form the aerosol. A method is further described of using ionized gas to confer charge onto the aerosol particles and using a progression of charging devices establish an electric field directing the flow of charged particles to the substrate. The progression of charging devices and associated apparatus results in high collection efficiency for the aerosol particles.