Abstract:
Disclosed are methods and digital tools for deriving tooth condition information for a patient's teeth, for populating a digital dental chart with derived tooth condition information, and for generating an electronic data record containing such information.
Abstract:
A 3D scanner system includes a scanning device capable of recording first and second data sets of a surface of an object when operating in a first configuration and a second configuration, respectively. A measurement unit is configured for measuring a distance from the scanning device to the surface. A control controls an operation of the scanning device based on the distance measured by the measurement unit, where the scanning device operates in the first configuration when the measured distance is within a first range of distances from the surface and the scanning device operates in the second configuration when the measured distance is within a second range of distances; and a data processor is configured to combine one or more first data sets and one or more second data sets to create a combined virtual 3D model of the object surface.
Abstract:
A 3D scanner system for detecting and/or visualizing cariogenic regions in teeth based on fluorescence emitted from said teeth, the 3D scanner system including data processing means configured for mapping a representation of fluorescence emitted from the teeth onto the corresponding portion of a digital 3D representation of the teeth to provide a combined digital 3D representation.
Abstract:
A scanner includes a camera, a light source for generating a probe light incorporating a spatial pattern, an optical system for transmitting the probe light towards the object and for transmitting at least a part of the light returned from the object to the camera, a focus element within the optical system for varying a position of a focus plane of the spatial pattern on the object, unit for obtaining at least one image from said array of sensor elements, unit for evaluating a correlation measure at each focus plane position between at least one image pixel and a weight function, a processor for determining the in-focus position(s) of each of a plurality of image pixels for a range of focus plane positions, or each of a plurality of groups of image pixels for a range of focus plane positions, and transforming in-focus data into 3D real world coordinates.
Abstract:
Disclosed are a scanner system and a method for recording surface geometry and surface color of an object where both surface geometry information and surface color information for a block of the image sensor pixels at least partly from one 2D image recorded by the color image sensor. A particular application is within dentistry, particularly for intraoral scanning.
Abstract:
Disclosed is a method for planning, visualizing, and/or optimizing dental restoration on at least a part of the pre-prepared teeth of a patient, wherein said method include the steps of: providing at least one 3D digital model of at least a part of the pre-prepared teeth; designing at least one dental restoration CAD model based on the 3D digital model of at least a part of the pre-prepared teeth; providing at least one 3D digital model of at least a part of the prepared teeth, where the prepared teeth are provided by preparing the pre-prepared teeth by dental restorative work, at least partly based on the dental restoration CAD model; and aligning the 3D models of the pre-prepared and the prepared teeth.
Abstract:
A 3D scanner for recording topographic characteristics of a surface of at least part of a body orifice, where the 3D scanner includes a main body having a mounting portion; a tip which can be mounted onto and un-mounted from the mounting portion, where the tip is configured for being brought into proximity of the body orifice surface when recording the topographic characteristics such that at least one optical element of the tip is at least partly exposed to the environment in the body orifice during the recording; and a heater for heating the optical element, where the heat is provided by way of thermal conduction; where the tip can be sterilized in a steam autoclave when un-mounted from the main body of the 3D scanner such that it subsequently can be reused.
Abstract:
A 3D scanner for recording topographic characteristics of a surface of at least part of a body orifice, where the 3D scanner includes a main body having a mounting portion; a tip which can be mounted onto and un-mounted from the mounting portion, where the tip is configured for being brought into proximity of the body orifice surface when recording the topographic characteristics such that at least one optical element of the tip is at least partly exposed to the environment in the body orifice during the recording; and a heater for heating the optical element, where the heat is provided by way of thermal conduction; where the tip can be sterilized in a steam autoclave when un-mounted from the main body of the 3D scanner such that it subsequently can be reused.
Abstract:
A 3D scanner system for detecting and/or visualizing cariogenic regions in teeth based on fluorescence emitted from the teeth, the 3D scanner system including one or more data processing units configured for mapping a representation of fluorescence emitted from the teeth onto the corresponding portion of a digital 3D representation of the teeth to provide a combined digital 3D representation.
Abstract:
A method for generating a digital 3D representation of at least a part of an intraoral cavity, the method including recording a plurality of views containing surface data representing at least the geometry of surface points of the part of the intraoral cavity using an intraoral scanner; determining a weight for each surface point at least partly based on scores that are measures of belief of that surface point representing a particular type of surface; executing a stitching algorithm that performs weighted stitching of the surface points in said plurality of views to generate the digital 3D representation based on the determined weights; wherein the scores for the surface points are found by at least one score-finding algorithm that takes as input at least the geometry part of the surface data for that surface point and surface data for points in a neighbourhood of that surface point.