Abstract:
A thin film device, such as an intravascular stent, is disclosed. The device is formed of a seamless expanse of thin-film (i) formed of a sputtered nitinol shape memory alloy, defining, in an austenitic state, an open, interior volume, having a thickness between 0 5-50 microns, having an austenite finish temperature Af below 37° C.; and demonstrating a stress/strain recovery greater than 3% at 37° C. The expanse can be deformed into a substantially compacted configuration in a martensitic state, and assumes, in its austenitic state, a shape defining such open, interior volume. Also disclosed is a sputtering method for forming the device.
Abstract:
A method of measuring with high accuracy the composition of shape memory alloy elements that are sputter deposited in thin film form. An element of known composition is polished with a flat surface. An element of unknown composition is sputter deposited onto the surface. Miniature openings are made by photography in the unknown layer, exposing an area of the known substrate. With adjacent areas of the two samples then only microns apart, accurate measurements of the compositions are made by comparing the X-ray spectra resulting from an electron beam scanning across the two areas.
Abstract:
Eyeglass frame hinges are replaced by flexures made of hyperelastic single-crystal shape memory alloy. These flexures exhibit more than 8 percent recoverable strain. Eyeglass frames with these flexures can be distorted repeatedly in ways that would destroy ordinary hinges, and recover without damage. Flexures may be incorporated in eyeglass frames in ways that make them attractive as fashion items, thus enhancing the value of a commodity consumer product.
Abstract:
A device and method for holding or clamping components together, and with the clamping being selectively loosened to permit the components to move through a predetermined distance without being fully released. A bolt has its head end attached to one component and its threaded end attached to the other component. A portion of the bolt's shank is formed with a necked-down portion. An actuator of shape memory alloy material is mounted about the bolt. When energized by heat, the actuator expands and exerts a great force which stretches the bolt, permanently deforming the bolt. This enables limited movement of the components while still restraining them from separating.
Abstract:
An SMA actuated miniature latching valve for on and off control of fluid flow. A valve closure includes a poppet for opening and closing the fluid flow path. The poppet is operated responsive to an actuator mechanism which has SMA wires arranged to be actuated by electric resistant heating. Actuation causes different ones of the wires to contract and pull the poppet either toward or away from a valve seat. A latching mechanism comprising a conical spring operates between two bistable positions which hold the poppet either fully open or fully closed without further application of power to the actuators. A method of forming a secure mechanical and electrical connection between an SMA wire end and its support includes the steps of swaging a metal cone between a cone-shaped hole in the support and the wire end.
Abstract:
A method of fabricating ternary TiNi-based alloys to achieve substantially higher phase-change transition temperatures in the resulting SMA materials and which have optimal thermo-mechanical properties. One target is provided which comprises the element Ti, a second target comprises the element Ni and a third target comprises an element which when combined with Ti and Ni can produce a shape memory alloy. The three targets are co-sputtered onto a substrate at rates which are controlled so that the sum of the percentage composition of the elements that are from the left side of the periodic table are substantially 50 atomic percent, and the sum of percentage composition of the elements that are from the right side of the periodic table comprise the remaining 50 atomic percent.
Abstract:
A valve and method of operation for controlling the flow of fluid from a pressurized fluid source while maintaining a secure seal against fluid leakage over long periods of time. The valve includes a valve body formed with an inlet channel which extends through a strain concentrating portion. The strain concentrating portion has an ultimate strength less than that of support portions of the body. An actuator applies a load to the valve body sufficient to create a stress which exceeds the ultimate strength of the strain concentrating portion. The strain concentrating portion then fractures into parts separated by a gap. The fracture forms openings from the inlet channel into the gap to create a flow path from the fluid source into an outlet channel.
Abstract:
Devices and methods of making devices having one or more components made of single crystal shape memory alloy capable of large recoverable distortions, defined herein as “hyperelastic” SMA. Recoverable Strains are as large as 9 percent, and in special circumstances as large as 22 percent. Hyperelastic SMAs exhibit no creep or gradual change during repeated cycling because there are no crystal boundaries. Hyperelastic properties are inherent in the single crystal as formed: no cold work or special heat treatment is necessary. Alloy components are Cu—Al—X where X may be Ni, Fe, Co, Mn. Single crystals are pulled from melt as in the Stepanov method and quenched by rapid cooling to prevent selective precipitation of individual elemental components. Conventional methods of finishing are used: milling, turning, electro-discharge machining, abrasion. Fields of application include aerospace, military, automotive, medical devices, microelectronics, and consumer products.
Abstract:
Methods of fabricating a free standing thin film of shape memory alloy material, and products made by the methods. A sacrificial layer of a metallic material is deposited onto the surface of a substrate. Then an amorphous shape memory alloy is sputter deposited onto the outer surface of the sacrificial layer. The sacrificial layer is etched away, leaving the thin film free standing, that is separated from the substrate. The thin film is annealed by heating into a crystalline state, with the annealing step carried out either after the film has been separated from the substrate, or while remaining attached to it.
Abstract:
Methods for making thin film multiple layered three-dimensional devices using two-dimensional MEMS techniques for use in a variety of applications including endovascular, endolumenal, intracranial, and intraocular medical applications. In the general method, a thin film first layer of the device material is deposited over a release layer which in turn is deposited on a substrate. An other release layer is deposited on the first device layer, with portions of the other release layer removed, leaving a pattern in the first device layer. In a similar manner a second layer of device material is formed in a pattern overlying the first device layer with portions of the two layers joined together leaving a portion of the release layer between them. The two release layers are removed and the first and second layers of the device material are formed into a three-dimensional shape suitable for the desired end-use application.