Abstract:
In one example embodiment, a first network element includes a memory storing computer-readable instructions and at least one processor configured to execute the computer-readable instructions to cause the first network element to, obtain user equipment (UE)-side parameter values from a user domain of the UE, convert a first data stream received from a second network element into multiple second data streams over multiple data communication paths between the UE and the first network element and allocate the multiple second data streams to at least one of the multiple data communication paths based on the UE-side parameter values.
Abstract:
In one example embodiment, a first network element includes a memory storing computer-readable instructions and at least one processor configured to execute the computer-readable instructions to cause the first network element to, obtain user equipment (UE)-side parameter values from a user domain of the UE, convert a first data stream received from a second network element into multiple second data streams over multiple data communication paths between the UE and the first network element and allocate the multiple second data streams to at least one of the multiple data communication paths based on the UE-side parameter values.
Abstract:
A method is provided of receiving user data from multiple transmitters, the user data from each transmitter having been encoded as a Low Density Lattice codeword, and the multiple Low Density Lattice codewords having been transmitted so as to be received as a combined signal at a receiver, the method of receiving comprising the steps of: (i) receiving the signal, (ii) calculating coefficients of linear combinations of the codewords from the multiple transmitters, (iii) calculating a scaling factor to be applied to the signal based on the coefficients, (iv) applying the scaling factor to the signal to provide a linear combination of the codewords, (v) decoding the linear combination of the codewords based on channel state information to obtain an optimal independent linear combination of user data, (vi) repeating steps (ii), (iii) (iv) and (v) to obtain at least as many optimal independent linear combinations as the number of transmitters, and recovering the user data from the optimal independent linear combinations.
Abstract:
In one example embodiment, a method includes obtaining sets of input data and an objective, the sets of input data including values of wireless network communication parameters, generating sets of output data for the sets of input data in accordance with the objective, generating a mapping of the sets of input data to the sets of output data and training a network controller using the mapping.
Abstract:
A method is provided of receiving user data from multiple transmitters, the user data from each transmitter having been encoded as a Low Density Lattice codeword, and the multiple Low Density Lattice codewords having been transmitted so as to be received as a combined signal at a receiver, the method of receiving comprising the steps of: (i) receiving the signal, (ii) calculating coefficients of linear combinations of the codewords from the multiple transmitters, (iii) calculating a scaling factor to be applied to the signal based on the coefficients, (iv) applying the scaling factor to the signal to provide a linear combination of the codewords, (v) decoding the linear combination of the codewords based on channel state information to obtain an optimal independent linear combination of user data, (vi) repeating steps (ii), (iii) (iv) and (v) to obtain at least as many optimal independent linear combinations as the number of transmitters, and recovering the user data from the optimal independent linear combinations.
Abstract:
There is provided a heterogeneous communications network. The heterogeneous communications network comprises: a macro cell; a small cell provided within the macro cell; and a user equipment provided within the macro cell, wherein the user equipment is operable to receive control-plane information from the macro cell and user-plane information from the macro cell and/or the small cell, and wherein the user equipment is operable to transmit a connection request based on the received control-plane information, the macro cell and/or small cell are operable to determine which of the macro cell and the small cell is to operate as the serving cell for the user equipment based on the connection request, and the determined serving cell is operable to transmit a connection response to the user equipment.
Abstract:
A user equipment, intermediate proxy node, method and computer program are disclosed. The user equipment comprises a network control domain and a user domain and is operable to receive and transmit data via multiple communication paths. The user equipment has conversion logic within the user domain operable to convert between a single data stream and multiple data streams formed from the single data stream, such that at least two of the multiple communication paths may be used for transmission of the multiple data streams formed from the single data stream.
Abstract:
A user equipment, intermediate proxy node, method and computer program are disclosed. The user equipment comprises a network control domain and a user domain and is operable to receive and transmit data via multiple communication paths. The user equipment has conversion logic within the user domain operable to convert between a single data stream and multiple data streams formed from the single data stream, such that at least two of the multiple communication paths may be used for transmission of the multiple data streams formed from the single data stream.
Abstract:
There is provided a heterogeneous communications network. The heterogeneous communications network comprises: a macro cell; a small cell provided within the macro cell; and a user equipment provided within the macro cell, wherein the user equipment is operable to receive control-plane information from the macro cell and user-plane information from the macro cell and/or the small cell, and wherein the user equipment is operable to transmit a connection request based on the received control-plane information, the macro cell and/or small cell are operable to determine which of the macro cell and the small cell is to operate as the serving cell for the user equipment based on the connection request, and the determined serving cell is operable to transmit a connection response to the user equipment.