Abstract:
The invention provides a continuous process for enzymatic hydrolysis of pretreated biomass, the process comprising: providing a pretreated lignocellulosic biomass feed material containing cellulose; introducing the pretreated lignocellulosic biomass feed material to a mechanical-treatment unit containing one or more decompression regions configured to release pressure; introducing a liquid solution containing cellulase enzymes to one or more decompression regions in the mechanical-treatment unit, wherein the liquid solution enters void spaces between fibers of the pretreated lignocellulosic biomass feed material, to form enzyme-containing cellulose-rich solids; and retaining the enzyme-containing cellulose-rich solids under effective hydrolysis conditions to hydrolyze at least some of the cellulose to glucose. Various apparatus configurations are disclosed for the mechanical-treatment unit.
Abstract:
A wet process for cleaning biomass is disclosed, comprising: introducing biomass feedstock to a vibrating separator, to generate an overflow stream and an underflow stream, wherein the overflow stream comprises biomass and large grit, and wherein the underflow stream comprises fines and small grit; introducing the overflow stream to a kinetic separator, to generate an intermediate biomass stream and a large-grit stream; introducing the underflow stream and elutriation water to a hydroclone separator, to generate a wet biomass-fines stream and a small-grit stream; separating water contained in the wet biomass-fines stream and recycling it as elutriation water, to generate a biomass fines stream; and combining the biomass fines stream with the intermediate biomass stream, thereby generating clean biomass. An alternative embodiment for a dry process to clean biomass is also disclosed. The clean biomass may be used in a wide variety of biorefining processes.
Abstract:
A low-cost process is provided to render lignocellulosic biomass accessible to cellulase enzymes, to produce fermentable sugars. Some variations provide a process to produce ethanol from lignocellulosic biomass (such as sugarcane bagasse or corn stover), comprising introducing a lignocellulosic biomass feedstock to a single-stage digestor; exposing the feedstock to a reaction solution comprising steam or liquid hot water within the digestor, to solubilize the hemicellulose in a liquid phase and to provide a cellulose-rich solid phase; refining the cellulose-rich solid phase, together with the liquid phase, in a mechanical refiner, thereby providing a mixture of refined cellulose-rich solids and the liquid phase; enzymatically hydrolyzing the mixture in a hydrolysis reactor with cellulase enzymes, to generate fermentable sugars; and fermenting the fermentable sugars to produce ethanol. Many alternative process configurations are described. The disclosed processes may be employed for other fermentation products.
Abstract:
The disclosure provides a process for separating fermentation inhibitors from a biomass-derived hydrolysate, comprising: introducing a biomass-derived liquid hydrolysate stream to a stripping column; introducing a steam-rich vapor stream to the stripping column to strip fermentation inhibitors (such as acetic acid) from the liquid hydrolysate stream; recovering a stripped liquid stream and a stripper vapor output stream; compressing the stripper vapor output stream; introducing the compressed vapor stream, and a water-rich liquid stream, to an evaporator; recovering, from the evaporator, an evaporated liquid stream and an evaporator output vapor stream; and recycling the evaporator output vapor stream to the stripping column as the steam-rich vapor stream. Other variations utilize a rectification column to recover a rectified liquid stream and a rectification column vapor stream, and recycle the rectification column vapor stream to the stripping column as the steam-rich vapor stream.
Abstract:
The present invention provides a method of treating a fermentation stream to remove dissolved gases, comprising obtaining a fermentation stream including water, one or more fermentation products, and dissolved gases; continuously sonicating the fermentation stream to generate acoustically cavitated gases from the dissolved gases; and applying vacuum to release the acoustically cavitated gases from the fermentation stream. The dissolved gases may include air, oxygen, nitrogen, helium, argon, carbon dioxide, carbon monoxide, hydrogen, or other non-condensables. The release of acoustically cavitated gases may optionally be done simultaneously with sonication. At least 75%, such as up to 95% or more, of the dissolved gases may be released from the fermentation stream. The disclosed method positively impacts downstream operations and product quality by removing dissolved gases.