Abstract:
A cover for a biological sample well tray, comprising a cap for sealing a sample well. The cap comprises a well lens for focusing light into the sample well and collecting light from the sample. In another aspect, the cap comprises an elongate portion configured to permit incoming light to pass into the sample well and out of the sample well. Various other aspects comprise a microcard for biological material, and an apparatus for a plurality of sample well strips. A method for testing a biological sample is also provided.
Abstract:
A thermal cycling device for performing nucleic acid amplification on a plurality of biological samples positioned in a sample well tray. The thermal cycling device includes a sample block assembly, an optical detection system, and a sample well tray holder configured to hold the sample well tray. The sample block assembly is adapted for movement between a first position permitting the translation of the sample well tray into alignment with sample block assembly, and a second position, upward relative to the first position, where the sample block assembly contacts the sample well tray. A method of performing nucleic acid amplification on a plurality of biological samples positioned in a sample well tray in a thermal cycling device is also provided.
Abstract:
An apparatus for transporting sample well trays with respect to a heating device is provided. The apparatus includes a sample well tray holder, a rotational actuator, and a biasing mechanism. The sample well tray holder includes a plate in which a sample well tray may be positioned. The sample well tray holder is configured to rotate about a first rotational axis. The rotational actuator is configured to rotate the sample well tray holder about the first rotational axis. The biasing mechanism is configured to urge the sample well tray holder in a generally upward direction along the first rotational axis.
Abstract:
A thermal cycling device for performing nucleic acid amplification on a plurality of biological samples positioned in a sample well tray. The thermal cycling device includes a sample block assembly, an optical detection system, and a sample well tray holder configured to hold the sample well tray. The sample block assembly is adapted for movement between a first position permitting the translation of the sample well tray into alignment with sample block assembly, and a second position, upward relative to the first position, where the sample block assembly contacts the sample well tray. A method of performing nucleic acid amplification on a plurality of biological samples positioned in a sample well tray in a thermal cycling device is also provided.
Abstract:
A sample chamber array is provided. The sample chamber array may comprise at least one reservoir in fluid communication with at least one sample chamber, and a movable portion defining the sample chamber. The reservoir is fillable with a liquid biological sample. The movable portion may be movable with respect to the remainder of the sample chamber from a first position to a second position. In the first position the movable portion is concave and the sample chamber is without biological sample. In the second position the movable portion is convex and the sample chamber comprises biological sample. The movement of the movable portion to the second position causes a pressure drop to transport the biological sample into the sample chamber from the at least one reservoir. Methods for processing a biological sample and methods of making a sample chamber array are also provided.
Abstract:
The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
Abstract:
The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
Abstract:
The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.