Abstract:
A light source may illuminate a scene with pulsed light that is pulsed non-periodically. The scene may include fluorescent material that fluoresces in response to the pulsed light. The pulsed light signal may comprise a maximum length sequence or Gold sequence. A lock-in time-of-flight sensor may take measurements of light returning from the scene. A computer may, for each pixel in the sensor, perform a Discrete Fourier Transform on measurements taken by the pixel, in order to calculate a vector of complex numbers for the pixel. Each complex number in the vector may encode phase and amplitude of incident light at the pixel and may correspond to measurements taken at a given time interval during the pulsed light signal. A computer may, based on phase of the complex numbers for a pixel, calculate fluorescence lifetime and scene depth of a scene point that corresponds to the pixel.
Abstract:
A hand held spectrometer is used to illuminate the object and measure the one or more spectra. The spectral data of the object can be used to determine one or more attributes of the object. In many embodiments, the spectrometer is coupled to a database of spectral information that can be used to determine the attributes of the object. The spectrometer system may comprise a hand held communication device coupled to a spectrometer, in which the user can input and receive data related to the measured object with the hand held communication device. The embodiments disclosed herein allow many users to share object data with many people, in order to provide many people with actionable intelligence in response to spectral data.
Abstract:
A gas analyzing apparatus includes a plurality of light sources, an inlet, a light detector, and an analyzing unit. The plurality of light sources simultaneously output a plurality of measurement light beams. The inlet introduces the plurality of measurement light beams into a measurement space. The light detector measures total intensity. The analyzing unit analyzes the target gases based on a difference between a measured target intensity and a reference intensity, in which the measured target intensity is a total intensity measured by the light detector after passing through the measurement space in which one of the target gases exists, while the reference intensity is the total intensity measured by the light detector after passing through the measurement space in which none of the target gases exists.
Abstract:
The invention relates to a method of determining the concentration of a gas component comprising the steps: generating and guiding a light beam having a wavelength variable in a wavelength range through a measurement volume in which the gas component having an absorption in the wavelength range is present; tuning the wavelength range; detecting the intensity of the light beam after passage through the measurement volume; storage of measurement points during the tuning that respectively consist of a point in time and an associated intensity value, to obtain a direct absorption line; generating an artificial measurement curve from the stored measurement points by shifting the measurement points on the time axis; wherein the shift takes place so that an artificial modulation results in the wavelength time extent; and evaluating the artificial measurement curve in accordance with the method of the wavelength modulation spectroscopy and determining a first concentration value therefrom.
Abstract:
Method and gas analyzer for measuring the concentration of a gas component in a sample gas, wherein to measure the concentration of a gas component in a sample gas, a laser diode is actuated by a current and light generated by the laser diode is guided through the sample gas to a detector, the current is simultaneously varied within periodically successive sampling intervals for the wavelength-dependent sampling of an absorption line of interest of the gas component, and the current can be additionally modulated sinusoidally based on wavelength modulation spectroscopy with a low frequency and small amplitude, such that a measuring signal generated by the detector is evaluated to form a measurement result, where to improve the measuring signal-noise ratio and achieve a much lower detection limit with the same measuring distance, the current is modulated with a high (RF) frequency in the GHz range so that no wavelength modulation occurs, and an RF modulation amplitude is selected at the maximum level using the linear control range of the laser diode where, before evaluation, the measuring signal is demodulated at the radio frequency.
Abstract:
A method and analyzer for identifying, verifying or otherwise characterizing a sample involves emitting electromagnetic radiation in at least one beam at a sample. The electromagnetic radiation includes at least two different wavelengths. A sample detector detects affected electromagnetic radiation resulting from the emitted electromagnetic radiation affected by the sample and provides output representing the detected affected radiation. A processor determines sample coefficients from the output and identifies, verifies or otherwise characterizes the sample using the sample coefficients and training coefficients determined from training samples. The coefficients reduce sensitivity to a sample retainer variation and/or are independent of concentration.
Abstract:
Gas analyzer and method for measuring the concentration of a gas component in a sample gas, wherein the wavelength of the light of a wavelength-tunable light source is varied within periodically successive sampling intervals and, in the process, additionally modulated with a frequency to perform wavelength dependent sampling of an absorption line of a gas component to be measured in the sample gas.
Abstract:
Gas analyzer and method for measuring the concentration of a gas component in a sample gas, wherein the wavelength of the light of a wavelength-tunable light source is varied within periodically successive sampling intervals and, in the process, additionally modulated with a frequency to perform wavelength dependent sampling of an absorption line of a gas component to be measured in the sample gas.
Abstract:
A sensor apparatus includes an irradiation system with a light source configured to emit linearly polarized light of a first polarization direction onto a sheet-like object, in a direction oblique to a direction orthogonal to a surface of the object, a first photodetector arranged on an optical path of light that is emitted from the irradiation system and then is reflected at the object by regular reflection, a first optical element, arranged on an optical path of light reflected by diffuse reflection from an incidence plane of the object, configured to transmit linearly polarized light of a second polarization direction that is orthogonal to the first polarization direction, a second photodetector configured to receive light that has passed through the first optical element, and a detection unit configured to detect at least one of basis weight and thickness of the object.