Abstract:
A light source that emits light, wherein, in coordinates in a CIE 1931 chromaticity diagram, the light has a color purity included in a region of 2 to 50 in a region surrounded by a line segment WB and a line segment WG that connect coordinates W (0.33, 0.33) indicating an achromatic color with coordinates B (0.091, 0.133) of 480 nm and coordinates G (0.373, 0.624) of 560 nm on a spectral locus, and the spectral locus, and has an area occupied by a continuous spectral wavelength in a wavelength region of 480 to 540 nm, of 15% or more relative to an area of an overall spectral wavelength of the light source at 380 to 780 nm.
Abstract:
A versatile silicone resin reflective substrate which exhibits high reflectance of high luminance light from an LED light source over a wide wavelength from short wavelengths of approximately 340-500 nm, which include wavelengths from 380-400 nm near lower limit of the visible region, to longer wavelength in the infra-red region. The silicone resin reflective substrate has a reflective layer which contains a white inorganic filler powder dispersed in a three-dimensional cross linked silicone resin, the inorganic filler powder having a high reflective index than the silicone resin. The reflective layer is formed on a support body as a film, a solid, or a sheet. The silicone resin reflective substrate can be easily formed as a wiring substrate, a packaging case or the like, and can be manufactured at low cost and a high rate of production.
Abstract:
Provided is a lighting device that emits light of a color that approximates the color of the surface of an object or the like. Disclosed is a method for manufacturing a lighting device, including the steps of: spectroscopically measuring a spectrum that constitutes a color of a measurement target; and adjusting a color of a light source such that an emission spectrum approximates the spectrum that constitutes the color of the measurement target.
Abstract:
There is provided an ink for white reflective film formation including: a liquid binder resin component containing a crosslinkable silicone liquid resin and crosslinkable silicone resin particles; and titanium oxide particles, the ink containing 10 to 500 parts by mass of the titanium oxide particles relative to a solid content of a total of 100 parts by mass in the liquid binder resin component.
Abstract:
A versatile silicone resin reflective substrate which exhibits high reflectance of high luminance light from an LED light source over a wide wavelength from short wavelengths of approximately 340-500 nm, which include wavelengths from 380-400 nm near lower limit of the visible region, to longer wavelength in the infra-red region. The silicone resin reflective substrate has a reflective layer which contains a white inorganic filler powder dispersed in a three-dimensional cross linked silicone resin, the inorganic filler powder having a high reflective index than the silicone resin. The reflective layer is formed on a support body as a film, a solid, or a sheet. The silicone resin reflective substrate can be easily formed as a wiring substrate, a packaging case or the like, and can be manufactured at low cost and a high rate of production.
Abstract:
There is provided an ink for white reflective film formation including: a liquid binder resin component containing a crosslinkable silicone liquid resin and crosslinkable silicone resin particles; and titanium oxide particles, the ink containing 10 to 500 parts by mass of the titanium oxide particles relative to a solid content of a total of 100 parts by mass in the liquid binder resin component.