Abstract:
The invention relates to a particle beam apparatus comprising: a particle beam source configured to generate a particle beam; a magnetic coil configured to emit a magnetic field to manipulate the particle beam; an object table configured to hold a substrate; a positioning device comprising ferromagnetic material, the positioning device further comprising at least one motor configured to position the object table with respect to the particle beam; and a controller configured to provide a control signal to the at least one motor to at least partly compensate for a magnetic force induced by the magnetic field acting on the positioning device.
Abstract:
An electron beam apparatus is provided. The apparatus comprises an e-beam source configured to generate an electron beam, a first part configured to support a substrate, the first part comprising an object table for supporting the substrate, the first part further comprising a short stroke actuator system for actuating the object table relative to the e-beam source, the short stroke actuator system comprising a short stroke forcer. The apparatus further comprises a second part configured to movably support the first part and a long stroke actuator system configured to actuate movement of the first part with respect to the second part, the long stroke actuator system comprising a long stroke forcer, wherein the short stroke forcer and/or the long stroke forcer is configured to be switched off while the electron beam is projected onto the substrate.
Abstract:
An actuator to displace, for example a mirror, provides movement with at least two degrees of freedom by varying the currents in two electromagnets (370). A moving part includes a permanent magnet (362) with a magnetic face constrained to move over a working area lying substantially in a first plane perpendicular to a direction of magnetization of the magnet. The electromagnets have pole faces lying substantially in a second plane closely parallel to the first plane, each pole face substantially filling a quadrant of the area traversed by the face of the moving magnet. A ferromagnetic shield (820) is provided around the moving part and has at least one interruption (822) to reduce the influence of adjacent actuators or stray fields whilst also minimizing attraction between the permanent magnet (362) and the shield (820).