Abstract:
An embedded sensor of a touch panel includes at least a readout unit and a reset unit. The total readout length or the total reset length during each sensing period may be larger than the pixel refresh period by introducing other readout units, introducing other reset units, or increasing the enabling period of the gate driving signals, thereby enhancing the sensibility of the touch panel.
Abstract:
An embedded sensor of a touch panel includes at least a readout unit and a reset unit. The total readout length or the total reset length during each sensing period may be larger than the pixel refresh period by introducing other readout units, introducing other reset units, or increasing the enabling period of the gate driving signals, thereby enhancing the sensibility of the touch panel.
Abstract:
A liquid crystal display having photo-sensing input mechanism includes a first gate line for transmitting a first gate signal, a second gate line for transmitting a second gate signal, a data line for transmitting a data signal, a pixel unit for outputting an image signal according to the first gate signal and the data signal, a readout line for transmitting a readout signal, a photo-sensing input unit and a driving adjustment unit. The photo-sensing input unit is utilized for generating a sensing voltage according to a driving voltage and an incident light signal, and is further utilized for outputting the readout signal according to the sensing voltage and the first gate signal. The driving adjustment unit is employed to provide the driving voltage according to the second gate signal and the incident light signal.
Abstract:
The present invention provides a sensing device and a display device utilizing the sensing device. A photo sensing element of the sensing device is alternatively operated in a biased state and a reverse-biased state to prevent the stress issue. Furthermore, the sensing device improves the S/N ratio by generating an output signal through an active component. The display device including the sensing device prevents the stress issue and improves the S/N ratio by using specific driving signals.
Abstract:
An optical touch display panel includes a plurality of resetting signal lines, a plurality of scanning signal lines, and a plurality of optical sensing touch units. Each optical sensing touch unit includes an optical sensing element and a storage capacitor. The optical sensing elements in a first direction are connected electrically to different scanning signal lines, and are configured to respectively receive a control signal. The optical sensing elements in a second direction includes a plurality of groups, and the optical sensing elements of each group are connected electrically to different resetting signal lines, so that each group receives a reset signal. Each optical sensing element outputs a charging signal corresponding to the reset signal to the storage capacitor according to the control signal, so as to reset a voltage of the storage capacitor.
Abstract:
A photo sensor type touch panel includes a plurality of readout lines electrically connected in parallel. The overall capacitance of a coupling capacitor between the readout lines connected in parallel and adjacent data lines having one type of polarity is equal to the overall capacitance of a coupling capacitor between the readout lines connected in parallel and adjacent data lines having the other type of polarity.
Abstract:
An embedded sensor of a touch panel includes at least a readout unit and a reset unit. The total readout length or the total reset length during each sensing period may be larger than the pixel refresh period by introducing other readout units, introducing other reset units, or increasing the enabling period of the gate driving signals, thereby enhancing the sensibility of the touch panel.
Abstract:
A liquid crystal display having photo-sensing input mechanism includes a first gate line for transmitting a first gate signal, a second gate line for transmitting a second gate signal, a data line for transmitting a data signal, a pixel unit for outputting an image signal according to the first gate signal and the data signal, a readout line for transmitting a readout signal, a photo-sensing input unit and a driving adjustment unit. The photo-sensing input unit is utilized for generating a sensing voltage according to a driving voltage and an incident light signal, and is further utilized for outputting the readout signal according to the sensing voltage and the first gate signal. The driving adjustment unit is employed to provide the driving voltage according to the second gate signal and the incident light signal.
Abstract:
An optical touch display panel includes a plurality of resetting signal lines, a plurality of scanning signal lines, and a plurality of optical sensing touch units. Each optical sensing touch unit includes an optical sensing element and a storage capacitor. The optical sensing elements in a first direction are connected electrically to different scanning signal lines, and are configured to respectively receive a control signal. The optical sensing elements in a second direction includes a plurality of groups, and the optical sensing elements of each group are connected electrically to different resetting signal lines, so that each group receives a reset signal. Each optical sensing element outputs a charging signal corresponding to the reset signal to the storage capacitor according to the control signal, so as to reset a voltage of the storage capacitor.
Abstract:
A liquid crystal display having photo-sensing input mechanism includes a first gate line for transmitting a first gate signal, a second gate line for transmitting a second gate signal, a data line for transmitting a data signal, a pixel unit for outputting an image signal according to the first gate signal and the data signal, a readout line for transmitting a readout signal, a photo-sensing input unit and a driving adjustment unit. The photo-sensing input unit is utilized for generating a sensing voltage according to a driving voltage and an incident light signal, and is further utilized for outputting the readout signal according to the sensing voltage and the first gate signal. The driving adjustment unit is employed to provide the driving voltage according to the second gate signal and the incident light signal.