Abstract:
Disclosed are systems, methods and computer-readable media for controlling and managing the identification and provisioning of resources within an on-demand center as well as the transfer of workload to the provisioned resources. One aspect involves creating a virtual private cluster within the on-demand center for the particular workload from a local environment. A method of managing resources between a local compute environment and an on-demand environment includes detecting an event associated with a local compute environment and based on the detected event, identifying information about the local environment, establishing communication with an on-demand compute environment and transmitting the information about the local environment to the on-demand compute environment, provisioning resources within the on-demand compute environment to substantially duplicate the local environment and transferring workload from the local-environment to the on-demand compute environment. The event can be a threshold or a triggering event within or outside of the local environment.
Abstract:
Disclosed are methods for estimating a time associated with shifting a first workload from a first compute environment to a second compute environment, separate from the first compute environment, estimating a likelihood of success associated with a likelihood that the first workload could successfully be shifted to the second compute environment, dividing or using the likelihood of success by the time to yield or produce a risk-adjusted shift time and, when a comparison of the shift time is longer than a maximum acceptable wait time, proceeding with a first operation associated with how to preempt the first workload by the second workload.
Abstract:
Disclosed are systems, hybrid compute environments, methods and computer-readable media for dynamically provisioning nodes for a workload. In the hybrid compute environment, each node communicates with a first resource manager associated with the first operating system and a second resource manager associated with a second operating system. The method includes receiving an instruction to provision at least one node in the hybrid compute environment from the first operating system to the second operating system, after provisioning the second operating system, pooling at least one signal from the resource manager associated with the at least one node, processing at least one signal from the second resource manager associated with the at least one node and consuming resources associated with the at least one node having the second operating system provisioned thereon.
Abstract:
A system and method of dynamically controlling a reservation of compute resources within a compute environment is disclosed. The method aspect of the invention comprises receiving a request from a requestor for a reservation of resources within the compute environment, reserving a first group of resources, evaluating resources within the compute environment to determine if a more efficient use of the compute environment is available and if a more efficient use of the compute environment is available, then canceling the reservation for the first group of resources and reserving a second group of resources of the compute environment according to the evaluation.
Abstract:
Disclosed are systems, hybrid compute environments, methods and computer-readable media for dynamically provisioning nodes for a workload. In the hybrid compute environment, each node communicates with a first resource manager associated with the first operating system and a second resource manager associated with a second operating system. The method includes receiving an instruction to provision at least one node in the hybrid compute environment from the first operating system to the second operating system, after provisioning the second operating system, pooling at least one signal from the resource manager associated with the at least one node, processing at least one signal from the second resource manager associated with the at least one node and consuming resources associated with the at least one node having the second operating system provisioned thereon.
Abstract:
A system and method are disclosed for dynamically reserving resources within a cluster environment. The method embodiment of the invention comprises receiving a request for resources in the cluster environment, monitoring events after receiving the request for resources and based on the monitored events, dynamically modifying at least one of the request for resources and the cluster environment.
Abstract:
Disclosed are a system and method of integrating an on-demand compute environment into a local compute environment. The method includes receiving a request from an administrator to integrate an on-demand compute environment into a local compute environment and, in response to the request, automatically integrating local compute environment information with on-demand compute environment information to make available resources from the on-demand compute environment to requestors of resources in the local compute environment.
Abstract:
The present invention provides a system, method and computer-readable media for generating virtual private clusters out of a group of compute resources. Typically, the group of compute resources involves a group of clusters independently administered. The method provides for aggregating the group of compute resources, partitioning the aggregated group of compute resources and presenting to each user in an organization a partition representation the organization's virtual private cluster. The users transparently view their cluster and have control over its operation. The partitions may be static or dynamic.
Abstract:
Disclosed are a system and method of integrating an on-demand compute environment into a local compute environment. The method includes receiving a request from an administrator to integrate an on-demand compute environment into a local compute environment and, in response to the request, automatically integrating local compute environment information with on-demand compute environment information to make available resources from the on-demand compute environment to requestors of resources in the local compute environment such that policies of the local environment are maintained for workload that consumes on-demand compute resources.
Abstract:
An on-demand compute environment comprises a plurality of nodes within an on-demand compute environment available for provisioning and a slave management module operating on a dedicated node within the on-demand compute environment, wherein upon instructions from a master management module at a local compute environment, the slave management module modifies at least one node of the plurality of nodes.