Abstract:
Techniques are described to adaptively adjust the equalizer settings of each transmitter in a transmitter-receiver pair. The transmitter-receiver pair can be used at least with implementations that comply with 40GBASE-CR4 or 100GBASE-CR10. For implementations that comply with 40GBASE-CR4, equalizer settings of four transmitters may be independently established.
Abstract:
In one embodiment, the present invention includes a method for receiving an incoming signal from a communication channel at a receiver, sampling the incoming signal in first and second samplers that are independently clocked, comparing outputs of the samplers, and outputting a measure of a horizontal eye opening of the incoming signal based on the comparison. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes an apparatus having an automatic gain control (AGC) stage to receive an input signal from a communication channel physical medium, a first local gain stage coupled to an output of the AGC stage, an equalizer coupled to an output of the first local gain stage, an echo canceler to receive local data to be transmitted along the communication channel physical medium, and a second local gain stage coupled to an output of the echo canceler. Other embodiments are described and claimed.
Abstract:
Techniques are described to adaptively adjust the equalizer settings of each transmitter in a transmitter-receiver pair. The transmitter-receiver pair can be used at least with implementations that comply with 40GBASE-CR4 or 100GBASE-CR10. For implementations that comply with 40GBASE-CR4, equalizer settings of four transmitters may be independently established.
Abstract:
Techniques are described to adaptively adjust the equalizer settings of each transmitter in a transmitter-receiver pair. The transmitter-receiver pair can be used at least with implementations that comply with 40GBASE-CR4 or 100GBASE-CR10. For implementations that comply with 40GBASE-CR4, equalizer settings of four transmitters may be independently established.
Abstract:
In one embodiment, the present invention includes an apparatus having a digital signal processor (DSP) coupled to receive a digitized signal. The DSP may be controlled to perform a timing recovery mechanism that implements a Mueller and Müller (MM)-based algorithm to generate a sensor output responsive to the digitized signal, where the incoming signal is non-linearly precoded in a transmitter from which the signal is received. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a method for receiving an incoming signal from a communication channel at a receiver, sampling the incoming signal in first and second samplers that are independently clocked, comparing outputs of the samplers, and outputting a measure of a horizontal eye opening of the incoming signal based on the comparison. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes an apparatus having a digital signal processor (DSP) coupled to receive a digitized signal. The DSP may be controlled to perform a timing recovery mechanism that implements a Mueller and Müller (MM)-based algorithm to generate a sensor output responsive to the digitized signal, where the incoming signal is non-linearly precoded in a transmitter from which the signal is received. Other embodiments are described and claimed.
Abstract:
One embodiment provides a network device that includes PHY circuitry comprising transmit circuitry (Tx) and receive circuitry (Rx), wherein the Tx and Rx circuitry are configured to be coupled to a respective channel to communicate with an external device via the channels, wherein the network device configured to communicate with the external device using an Ethernet communications protocol; and test circuitry. The test circuitry is configured to: designate a through channel and at least one crosstalk channel from among the channels; determine, in the time domain, an approximate available signal voltage of a first response signal, wherein the first response signal is in response to a test signal applied to the through channel; determine a first noise profile of the first response signal in response to the test signal applied on the through channel; determine a second noise profile of a second response signal, wherein the second response signal is in response to the test signal applied on a crosstalk channel and measured on the through channel; and determine a signal-to-noise ratio of the through channel based on, at least in part, the approximate available signal voltage and the first and second noise profiles.
Abstract:
In one embodiment, the present invention includes an apparatus having an automatic gain control (AGC) stage to receive an input signal from a communication channel physical medium, a first local gain stage coupled to an output of the AGC stage, an equalizer coupled to an output of the first local gain stage, an echo canceller to receive local data to be transmitted along the communication channel physical medium, and a second local gain stage coupled to an output of the echo canceller. Other embodiments are described and claimed.