Abstract:
Provided herein are compositions and methods for inducing CRISPR/Cas-based editing of a target nucleic acid (e.g., target DNA or target RNA) in vitro or in a cell, using modified prime editing guide RNAs (pegRNAs) that incorporate one or more chemically-modified nucleotides. The modified pegRNAs disclosed herein may be used to induce Cas-mediated incorporation of one or more nucleotide changes and/or targeted mutagenesis of a target nucleic acid. The nucleotide change can include, e.g., one or more nucleotide changes, an insertion of one or more nucleotides, or a deletion of one or more nucleotides.
Abstract:
Provided herein is a method for producing a population of oligonucleotides that has reduced synthesis errors. In certain embodiments, the method comprises: a) obtaining an initial population of hairpin oligonucleotide molecules that each comprise a double-stranded stem region and a loop region; b) contacting the double-stranded region of the hairpin oligonucleotide molecules with a mismatch binding protein; and c) eliminating any molecules that bind to the mismatch binding protein, thereby producing a population of oligonucleotides that has reduced synthesis errors. A kit and a composition for performing the method are also provided.
Abstract:
Provided herein are compositions and methods for inducing CRISPR/Cas-based editing of a target nucleic acid (e.g., target DNA or target RNA) in vitro or in a cell, using modified prime editing guide RNAs (pegRNAs) that incorporate one or more chemically-modified nucleotides. The modified pegRNAs disclosed herein may be used to induce Cas-mediated incorporation of one or more nucleotide changes and/or targeted mutagenesis of a target nucleic acid. The nucleotide change can include, e.g., one or more nucleotide changes, an insertion of one or more nucleotides, or a deletion of one or more nucleotides.
Abstract:
The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
Abstract:
The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
Abstract:
Provided herein are compositions and methods for inducing CRISPR/Cas-based editing of a target nucleic acid (e.g., target DNA or target RNA) in vitro or in a cell, using modified prime editing guide RNAs (pegRNAs) that incorporate one or more chemically-modified nucleotides. The modified pegRNAs disclosed herein may be used to induce Cas-mediated incorporation of one or more nucleotide changes and/or targeted mutagenesis of a target nucleic acid. The nucleotide change can include, e.g., one or more nucleotide changes, an insertion of one or more nucleotides, or a deletion of one or more nucleotides.
Abstract:
Provided herein are compositions and methods for inducing CRISPR/Cas-based editing of a target nucleic acid (e.g., target DNA or target RNA), or modulating the express of a target nucleic acid, in vitro or in a cell, using modified guide RNAs (gRNAs) that incorporate one or more chemically-modified nucleotides. In some aspects, these modified gRNAs provide superior performance under challenging conditions.
Abstract:
The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
Abstract:
The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.