Abstract:
Integrated circuits such as application specific integrated circuits or programmable logic devices may include sequential elements such as configurable register circuitry. Such configurable register circuitry may operate as independent registers controlled by selectable clock signals or as a single register with error detection and error correction capabilities. For example, the configurable register circuitry when operated as single register with error detection and error correction circuitry may detect and correct runtime errors caused by manufacturing and environmental variations, thereby allowing an increase in the clock rate that controls the register. If desired, the configurable register circuitry may be configured to detect single event upsets, which may enable the implementation of safe finite state machines.
Abstract:
A packaged component may include an interposer and integrated circuit dies mounted on the interposer. At least one of the dies may be a radiation-hardened integrated circuit die, whereas the remaining dies may be non-radiation-hardened dies. If desired, the interposer may be a radiation-hardened interposer whereas the integrated circuit dies may be non-radiation-hardened dies. The radiation-hardened die or the radiation-hardened interposer may include monitor circuitry that is used to test non-radiation-hardened circuitry of the packaged component. Test results may be stored in a database at the monitor circuitry or transmitted to external devices such as a server. The monitor circuitry may be used to reconfigure failed circuitry or may control multiplexing circuitry in the interposer to functionally replace the failed circuitry. If desired, the monitor circuitry may adjust power consumption of non-radiation-hardened circuitry based on the test results.
Abstract:
Integrated circuits may include logic regions configurable to perform custom functions. Interconnects may be used to rout signals throughout the integrated circuit. The logic region may be coupled to input selection circuitry for selecting and providing input signals from the interconnects to the logic regions and to output selection and routing circuitry for selecting and transmitting output signals over interconnects to other logic regions. Bypass circuitry may provide direct access to registers inside the logic regions and to the output selection and routing circuitry by bypassing the input selection circuitry and other processing circuitry inside the logic regions. Bus interconnections having logic regions performing register pipelining, wire stitching, and acting as data source/sink stations to get on and off the bus interconnections may be generated by configuring the bypass circuitry and the output selection and routing circuitry appropriately.
Abstract:
A packaged component may include an interposer and integrated circuit dies mounted on the interposer. At least one of the dies may be a radiation-hardened integrated circuit die, whereas the remaining dies may be non-radiation-hardened dies. If desired, the interposer may be a radiation-hardened interposer whereas the integrated circuit dies may be non-radiation-hardened dies. The radiation-hardened die or the radiation-hardened interposer may include monitor circuitry that is used to test non-radiation-hardened circuitry of the packaged component. Test results may be stored in a database at the monitor circuitry or transmitted to external devices such as a server. The monitor circuitry may be used to reconfigure failed circuitry or may control multiplexing circuitry in the interposer to functionally replace the failed circuitry. If desired, the monitor circuitry may adjust power consumption of non-radiation-hardened circuitry based on the test results.
Abstract:
The present invention provides a hybrid programmable logic device which includes a programmable field programmable gate array logic fabric and a many-core distributed processing subsystem. The device integrates both a fabric of programmable logic elements and processors in the same device, i.e., the same chip. The programmable logic elements may be sized and arranged such that place and route tools can address the processors and logic elements as a homogenous routing fabric. The programmable logic elements may provide hardware acceleration functions to the processors that can be defined after the device is fabricated. The device may include scheduling circuitry that can schedule the transmission of data on horizontal and vertical connectors in the logic fabric to transmit data between the programmable logic elements and processor in an asynchronous manner.
Abstract:
A packaged component may include an interposer and integrated circuit dies mounted on the interposer. At least one of the dies may be a radiation-hardened integrated circuit die, whereas the remaining dies may be non-radiation-hardened dies. If desired, the interposer may be a radiation-hardened interposer whereas the integrated circuit dies may be non-radiation-hardened dies. The radiation-hardened die or the radiation-hardened interposer may include monitor circuitry that is used to test non-radiation-hardened circuitry of the packaged component. Test results may be stored in a database at the monitor circuitry or transmitted to external devices such as a server. The monitor circuitry may be used to reconfigure failed circuitry or may control multiplexing circuitry in the interposer to functionally replace the failed circuitry. If desired, the monitor circuitry may adjust power consumption of non-radiation-hardened circuitry based on the test results.
Abstract:
Hybrid adder circuitry is provided for integrated circuits such as programmable integrated circuits. The hybrid adder may combine the capabilities of multiple adder architectures. Hybrid adders may include carry select and carry ripple adder circuits. The adder circuits may be combined using a carry look-ahead architecture. Adder functionality may be implemented using the resources of logic regions on the programmable integrated circuits. Each logic region may include combinatorial logic such as look-up table logic and register circuitry. The hybrid adder circuitry may receive input words to be added from the combinatorial circuitry and may produce corresponding arithmetic sum output signals to the register circuitry.
Abstract:
An integrated circuit may have configurable storage blocks. Multiple configurable storage blocks may share one or more internal address busses with selected configurable storage blocks having access a given address bus. An address bus may be unidirectional or bidirectional and may convey the same address signal from one configurable address block to another or to several other configurable storage blocks. Tri-state buffers or multiplexers may selectively couple or decouple the address bus between configurable storage blocks. Redundant address bus paths may bypass configurable address blocks in neighboring rows or columns allowing for disabling the respective row or column. The address bus may further have pipeline registers to allow for pipelined access to configurable storage blocks.
Abstract:
A programmable logic device architecture having logic elements with dedicated hardware to configure the look up tables of the logic element to either perform logic functions or to operate as a register for pipelining. The programmable logic device includes a general interconnect and a plurality of logic array blocks interconnected by the general interconnect. Each of the plurality of logic blocks further includes one or more logic elements. The logic elements each include a first look up table, a second look up table, and dedicated hardware within the logic element to configure the first look table and the second look up table as a register without having to use the general interconnect. In one embodiment, the dedicated hardware includes a plurality of dedicated interconnects within the logic element to configure the two look up tables as a pair of cross coupled muxes or latches when configured as a register.
Abstract:
Integrated circuits may include logic regions configurable to perform custom functions. Interconnects may be used to route signals throughout the integrated circuit. The logic region may be coupled to input selection circuitry for selecting and providing input signals from the interconnects to the logic regions and to output selection and routing circuitry for selecting and transmitting output signals over interconnects to other logic regions. Bypass circuitry may provide direct access to registers inside the logic regions and to the output selection and routing circuitry by bypassing the input selection circuitry and other processing circuitry inside the logic regions. Bus interconnections having logic regions performing register pipelining, wire stitching, and acting as data source/sink stations to get on and off the bus interconnections may be generated by configuring the bypass circuitry and the output selection and routing circuitry appropriately.