Abstract:
Systems and methods for configuring a SPA are disclosed. The SPA comprises a plurality of input ports, a plurality of data memory units, signal processing circuitry, and an enable block including at least two counters. Each counter determines an amount of unprocessed data that is stored in a respective one of the plurality of data memory units, and the enable block is configured to disable the signal processing circuitry until a predetermined amount of data is received over the input ports.
Abstract:
A method for designing a system to be implemented on a target device includes generating a register transfer language (RTL) representation of the system from a description of the system without pipelined delays. The RTL representation of the system includes pipelined delays to facilitate timing of the system as implemented on a target device identified by a designer.
Abstract:
Systems and methods for configuring a SPA are disclosed. The SPA comprises a plurality of input ports, a plurality of data memory units, signal processing circuitry, and an enable block including at least two counters. Each counter determines an amount of unprocessed data that is stored in a respective one of the plurality of data memory units, and the enable block is configured to disable the signal processing circuitry until a predetermined amount of data is received over the input ports.
Abstract:
A method for designing a system to be implemented on a target device includes generating a register transfer language (RTL) representation of the system from a description of the system without pipelined delays. The RTL representation of the system includes pipelined delays to facilitate timing of the system as implemented on a target device identified by a designer.
Abstract:
Systems and methods for configuring circuitry for use with a field programmable gate array (FPGA) are disclosed. The circuitry includes an array of signal processing accelerators (SPAs) and an array of network nodes. The array of SPAs is separate from a field programmable gate array (FPGA), and the array of SPAs is configured to receive input signals from the FPGA. The array of network nodes controllably route the input signals to the array of SPAs.
Abstract:
Systems and devices are provided for broadcasting a message to addressed logic blocks in lieu of, or in addition to, programming individual status registers of an integrated circuit. One such device may be an integrated circuit that includes a broadcast bus and addressed logic blocks. The broadcast bus may broadcast an addressed message that includes content and a target address. Each of the addressed logic blocks may receive the addressed message from the broadcast bus and use the content of the addressed message only when the target address matches an address assigned to that logic block.
Abstract:
Systems and devices are provided for broadcasting a message to addressed logic blocks in lieu of, or in addition to, programming individual status registers of an integrated circuit. One such device may be an integrated circuit that includes a broadcast bus and addressed logic blocks. The broadcast bus may broadcast an addressed message that includes content and a target address. Each of the addressed logic blocks may receive the addressed message from the broadcast bus and use the content of the addressed message only when the target address matches an address assigned to that logic block.
Abstract:
Systems and methods for configuring a SPA are disclosed. The SPA comprises a plurality of input ports, a plurality of data memory units, signal processing circuitry, and an enable block including at least two counters. Each counter determines an amount of unprocessed data that is stored in a respective one of the plurality of data memory units, and the enable block is configured to disable the signal processing circuitry until a predetermined amount of data is received over the input ports.
Abstract:
Systems and methods of configuring a programmable integrated circuit. An array of signal processing accelerators (SPAs) is included in the programmable integrated circuit. The array of SPAs is separate from a field programmable gate array (FPGA), and the array of SPAs is configured to receive input data from the FPGA and is programmable to perform at least a filtering function on the input data to obtain output data.
Abstract:
A method for designing a discrete Fourier transform (DFT) unit in a system on a target device includes identifying a number of DFT engines to implement in the DFT unit in response to a data throughput rate, a clock rate of the system, a size of a DFT, and radix of each of the DFT engines.