Abstract:
Embodiments of the present disclosure generally relate to a batch processing chamber that is adapted to simultaneously cure multiple substrates at one time. The batch processing chamber includes multiple processing sub-regions that are each independently temperature controlled. The batch processing chamber may include a first and a second sub-processing region that are each serviced by a substrate transport device external to the batch processing chamber. In addition, a slotted cover mounted on the loading opening of the batch curing chamber reduces the effect of ambient air entering the chamber during loading and unloading.
Abstract:
Embodiments of the present disclosure generally relate to a batch processing chamber that is adapted to simultaneously cure multiple substrates at one time. The batch processing chamber includes multiple processing sub-regions that are each independently temperature controlled. The batch processing chamber may include a first and a second sub-processing region that are each serviced by a substrate transport device external to the batch processing chamber. In addition, a slotted cover mounted on the loading opening of the batch curing chamber reduces the effect of ambient air entering the chamber during loading and unloading.
Abstract:
Embodiments of the disclosure include apparatus and methods for modifying a surface of a substrate using a surface modification process. The process of modifying a surface of a substrate generally includes the alteration of a physical or chemical property and/or redistribution of a portion of an exposed material on the surface of the substrate by use of one or more energetic particle beams while the substrate is disposed within a particle beam modification apparatus. Embodiments of the disclosure also provide a surface modification process that includes one or more pre-modification processing steps and/or one or more post-modification processing steps that are all performed within one processing system.