Abstract:
Embodiments of the invention may generally provide a method and apparatus that is used to prepare new and used substrate support assemblies for use in typical semiconductor processing environments. Embodiments of the present invention generally relate to a method of coating a new substrate support assembly or a used substrate support assembly that is being refurbished. The deposited coating may include a surface enhancement and/or protective material that is configured to protect one or more of the components exposed to the processing environment during a semiconductor process. The substrate support assembly may be coated with a protective material and during the coating process, the substrate support assembly is maintained at a temperature that is less than or equal to 150° C. by flowing a coolant through channels formed in a base of the substrate support assembly.
Abstract:
Implementations described herein provide a pixelated substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a cooling base comprising the substrate support assembly, which in turn, allows both lateral and azimuthal tuning of a substrate processed on the substrate support assembly. A processing chamber having a pixelated substrate support assembly and method for processing a substrate using a pixelated substrate support assembly are also provided.
Abstract:
An electrostatic chuck is described with external flow adjustments for improved temperature distribution. In one example, a method for adjusting coolant flow in an electrostatic chuck includes heating a dielectric puck, the dielectric puck being for electrostatically gripping a silicon wafer. Heat is detected at a plurality of locations on a top surface of the dielectric puck, the locations each being thermally coupled to at least one of a plurality of coolant chambers of the electrostatic chuck. A plurality of valves are adjusted to control coolant flow into the coolant chambers based on the detected heat.
Abstract:
An electrostatic chuck includes a thermally conductive base having a plurality of heating elements disposed therein. A metal layer covers at least a portion of the thermally conductive base, wherein the metal layer shields the plurality of heating elements from radio frequency (RF) coupling and functions as an electrode for the electrostatic chuck. A plasma resistant dielectric layer covers the metal layer.
Abstract:
A substrate support assembly comprises a ceramic body and a thermally conductive base bonded to a lower surface of the ceramic body. The substrate support assembly further comprises a protective layer covering an upper surface of the ceramic body, wherein the protective layer comprises at least one of yttrium aluminum garnet (YAG) or a ceramic compound comprising Y4Al2O9 and a solid-solution of Y2O3—ZrO2.
Abstract translation:衬底支撑组件包括陶瓷体和结合到陶瓷体的下表面的导热底座。 衬底支撑组件还包括覆盖陶瓷体的上表面的保护层,其中保护层包括钇铝石榴石(YAG)或包含Y 4 Al 2 O 9的陶瓷化合物和Y 2 O 3 -ZrO 2的固溶体中的至少一种。
Abstract:
Methods and apparatus for bonding an electrostatic chuck to a component of a substrate support are provided herein. In some embodiments, an adhesive for bonding components of a substrate support may include a matrix of silicon-based polymeric material having a filler dispersed therein. The silicon based polymeric material may be a polydimethylsiloxane (PDMS) structure having a molecular weight with a low molecular weight (LMW) content Σ D3-D10 of less than about 500 ppm. In some embodiments, the filler may comprise between about 50 to about 70 percent by volume of the adhesive layer. In some embodiments, the filler may comprise particles of aluminum oxide (Al2O3), aluminum nitride (AlN), yttrium oxide (Y2O3), or combinations thereof. In some embodiments, the filler may comprise particles having a diameter of about 10 nanometers to about 10 microns.
Abstract:
A control system that includes deflection sensors which can control clamping forces applied by electrostatic chucks, and related methods are disclosed. By using a sensor to determine a deflection of a workpiece supported by an electrostatic chuck, a control system may use the deflection measured to control a clamping force applied to the workpiece by the electrostatic chuck. The control system applies a clamping voltage to the electrostatic chuck so that the clamping force reaches and maintains a target clamping force. In this manner, the clamping force may secure the workpiece to the electrostatic chuck to enable manufacturing operations to be performed while preventing workpiece damage resulting from unnecessary higher values of the clamping force.
Abstract:
Embodiments disclosed herein include a method for minimizing chucking forces on a workpiece disposed on a electrostatic chuck within a plasma processing chamber. The method begins by placing a workpiece on an electrostatic chuck in a processing chamber. A plasma is struck within the processing chamber. A deflection force is monitored on the workpiece. A chucking voltage is applied at a minimum value. A backside gas pressure is applied at a minimum pressure. The chucking voltage and or backside gas pressure is adjusted such that the deflection force is less than a threshold value. And the chucking voltage and the backside gas pressure are simultaneously ramped up.
Abstract:
A substrate support assembly comprises a ceramic body and a thermally conductive base bonded to a lower surface of the ceramic body. The substrate support assembly further comprises a protective layer covering an upper surface of the ceramic body, wherein the protective layer comprises at least one of yttrium aluminum garnet (YAG) or a ceramic compound comprising Y4Al2O9 and a solid-solution of Y2O3—ZrO2.
Abstract:
A substrate support assembly comprises a ceramic body and a thermally conductive base bonded to a lower surface of the ceramic body. The substrate support assembly further comprises a protective layer covering an upper surface of the ceramic body, wherein the protective layer comprises at least one of yttrium aluminum garnet (YAG) or a ceramic compound comprising Y4Al2O9 and a solid-solution of Y2O3—ZrO2.