Abstract:
The present invention provides a method and system to facilitate the verification of genuineness of a document by visiting a unique, non-forgeable, permanent URL printed on the document and comparing the document against the original document stored at a database hosted by the system of the present invention. The verifier is given a verification certificate which can also be checked for genuineness by visiting another unique URL printed on the verification certificate.
Abstract:
A first facet of each of a plurality of pyramids on a surface of a workpiece is doped to a first dose while a second facet and a third facet of each of the plurality of pyramids is simultaneously doped to a second dose different than the first dose. The first facets may enable low resistance contacts and the second and third facets may enable higher current generation and an improved blue response. Ion implantation may be used to perform the doping.
Abstract:
Methods of counterdoping a solar cell, particularly an IBC solar cell are disclosed. One surface of a solar cell may require portions to be n-doped, while other portions are p-doped. Traditionally, a plurality of lithography and doping steps are required to achieve this desired configuration. In contrast, one lithography step can be eliminated by the use of a blanket doping of one conductivity and a mask patterned counterdoping process of the opposite conductivity. The areas dosed during the masked patterned doping receive a sufficient dose so as to completely reverse the effect of the blanket doping and achieve a conductivity that is opposite the blanket doping. In another embodiment, the counterdoping is performed by means of a direct patterning technique, thereby eliminating the remaining lithography step. Various methods of direct counterdoping processes are disclosed.
Abstract:
A technique for improving ion implantation based on ion beam angle-related information is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for improving ion implantation. The method may comprise obtaining angle-related information associated with an ion beam. The method may also comprise calculating, based on the angle-related information, an ion beam angle distribution over a wafer for one or more potential scanning modes. The method may further comprise selecting a desired scanning mode from the one or more potential scanning modes based on an evaluation of performance metric caused by the ion beam angle distribution.
Abstract:
Glitches during ion implantation of a workpiece, such as a solar cell, can be compensated for. In one instance, a workpiece is implanted during a first pass at a first speed. This first pass results in a region of uneven dose in the workpiece. The workpiece is then implanted during a second pass at a second speed. This second speed is different from the first speed. The second speed may correspond to the entire workpiece or just the region of uneven dose in the workpiece.
Abstract:
A method includes directing an ion beam at a plurality of differing incident angles with respect to a target surface of a substrate by tilting the substrate as the ion beam is distributed across the target surface to implant ions into a plurality of portions of the substrate, wherein each one of the plurality of differing incident angles is associated with a different one of the plurality of portions, measuring angle sensitive data from each of the plurality of portions of to the substrate, and determining an angle misalignment between the target surface and the ion beam incident on the target surface from the angle sensitive data.
Abstract:
A technique for improving ion implantation throughput and dose uniformity is disclosed. In one exemplary embodiment, a method for improving ion implantation throughput and dose uniformity may comprise measuring an ion beam density distribution in an ion beam. The method may also comprise calculating an ion dose distribution across a predetermined region of a workpiece that results from a scan velocity profile, wherein the scan velocity profile comprises a first component and a second component that control a relative movement between the ion beam and the workpiece in a first direction and a second direction respectively, and wherein the ion dose distribution is based at least in part on the ion beam density distribution. The method may further comprise adjusting at least one of the first component and the second component of the scan velocity profile to achieve a desired ion dose distribution in the predetermined region of the workpiece.