-
公开(公告)号:US20250123620A1
公开(公告)日:2025-04-17
申请号:US18990684
申请日:2024-12-20
Applicant: Aurora Operations, Inc.
Inventor: Raquel Urtasun , Mengye Ren , Andrei Pokrovsky , Bin Yang
IPC: G05D1/00 , G01S17/86 , G01S17/89 , G01S17/931
Abstract: The present disclosure provides systems and methods that apply neural networks such as, for example, convolutional neural networks, to sparse imagery in an improved manner. For example, the systems and methods of the present disclosure can be included in or otherwise leveraged by an autonomous vehicle. In one example, a computing system can extract one or more relevant portions from imagery, where the relevant portions are less than an entirety of the imagery. The computing system can provide the relevant portions of the imagery to a machine-learned convolutional neural network and receive at least one prediction from the machine-learned convolutional neural network based at least in part on the one or more relevant portions of the imagery. Thus, the computing system can skip performing convolutions over regions of the imagery where the imagery is sparse and/or regions of the imagery that are not relevant to the prediction being sought.
-
公开(公告)号:US12210344B2
公开(公告)日:2025-01-28
申请号:US18513119
申请日:2023-11-17
Applicant: Aurora Operations, Inc.
Inventor: Raquel Urtasun , Mengye Ren , Andrei Pokrovsky , Bin Yang
IPC: G05D1/00 , G01S17/86 , G01S17/89 , G01S17/931
Abstract: The present disclosure provides systems and methods that apply neural networks such as, for example, convolutional neural networks, to sparse imagery in an improved manner. For example, the systems and methods of the present disclosure can be included in or otherwise leveraged by an autonomous vehicle. In one example, a computing system can extract one or more relevant portions from imagery, where the relevant portions are less than an entirety of the imagery. The computing system can provide the relevant portions of the imagery to a machine-learned convolutional neural network and receive at least one prediction from the machine-learned convolutional neural network based at least in part on the one or more relevant portions of the imagery. Thus, the computing system can skip performing convolutions over regions of the imagery where the imagery is sparse and/or regions of the imagery that are not relevant to the prediction being sought.
-