Sparse Convolutional Neural Networks

    公开(公告)号:US20250123620A1

    公开(公告)日:2025-04-17

    申请号:US18990684

    申请日:2024-12-20

    Abstract: The present disclosure provides systems and methods that apply neural networks such as, for example, convolutional neural networks, to sparse imagery in an improved manner. For example, the systems and methods of the present disclosure can be included in or otherwise leveraged by an autonomous vehicle. In one example, a computing system can extract one or more relevant portions from imagery, where the relevant portions are less than an entirety of the imagery. The computing system can provide the relevant portions of the imagery to a machine-learned convolutional neural network and receive at least one prediction from the machine-learned convolutional neural network based at least in part on the one or more relevant portions of the imagery. Thus, the computing system can skip performing convolutions over regions of the imagery where the imagery is sparse and/or regions of the imagery that are not relevant to the prediction being sought.

    Sparse convolutional neural networks

    公开(公告)号:US12210344B2

    公开(公告)日:2025-01-28

    申请号:US18513119

    申请日:2023-11-17

    Abstract: The present disclosure provides systems and methods that apply neural networks such as, for example, convolutional neural networks, to sparse imagery in an improved manner. For example, the systems and methods of the present disclosure can be included in or otherwise leveraged by an autonomous vehicle. In one example, a computing system can extract one or more relevant portions from imagery, where the relevant portions are less than an entirety of the imagery. The computing system can provide the relevant portions of the imagery to a machine-learned convolutional neural network and receive at least one prediction from the machine-learned convolutional neural network based at least in part on the one or more relevant portions of the imagery. Thus, the computing system can skip performing convolutions over regions of the imagery where the imagery is sparse and/or regions of the imagery that are not relevant to the prediction being sought.

Patent Agency Ranking