Automatic Annotation of Object Trajectories in Multiple Dimensions

    公开(公告)号:US20250002050A1

    公开(公告)日:2025-01-02

    申请号:US18883299

    申请日:2024-09-12

    Abstract: Techniques for improving the performance of an autonomous vehicle (AV) by automatically annotating objects surrounding the AV are described herein. A system can obtain sensor data from a sensor coupled to the AV and generate an initial object trajectory for an object using the sensor data. Additionally, the system can determine a fixed value for the object size of the object based on the initial object trajectory. Moreover, the system can generate an updated initial object trajectory, wherein the object size corresponds to the fixed value. Furthermore, the system can determine, based on the sensor data and the updated initial object trajectory, a refined object trajectory. Subsequently, the system can generate a multi-dimensional label for the object based on the refined object trajectory. A motion plan for controlling the AV can be generated based on the multi-dimensional label.

    Sparse Convolutional Neural Networks

    公开(公告)号:US20250123620A1

    公开(公告)日:2025-04-17

    申请号:US18990684

    申请日:2024-12-20

    Abstract: The present disclosure provides systems and methods that apply neural networks such as, for example, convolutional neural networks, to sparse imagery in an improved manner. For example, the systems and methods of the present disclosure can be included in or otherwise leveraged by an autonomous vehicle. In one example, a computing system can extract one or more relevant portions from imagery, where the relevant portions are less than an entirety of the imagery. The computing system can provide the relevant portions of the imagery to a machine-learned convolutional neural network and receive at least one prediction from the machine-learned convolutional neural network based at least in part on the one or more relevant portions of the imagery. Thus, the computing system can skip performing convolutions over regions of the imagery where the imagery is sparse and/or regions of the imagery that are not relevant to the prediction being sought.

    Systems and Methods for Simulating Dynamic Objects Based on Real World Data

    公开(公告)号:US20250037298A1

    公开(公告)日:2025-01-30

    申请号:US18910738

    申请日:2024-10-09

    Abstract: Systems and methods for generating simulation data based on real-world dynamic objects are provided. A method includes obtaining two- and three-dimensional data descriptive of a dynamic object in the real world. The two- and three-dimensional information can be provided as an input to a machine-learned model to receive object model parameters descriptive of a pose and shape modification with respect to a three-dimensional template object model. The parameters can represent a three-dimensional dynamic object model indicative of an object pose and an object shape for the dynamic object. The method can be repeated on sequential two- and three-dimensional information to generate a sequence of object model parameters over time. Portions of a sequence of parameters can be stored as simulation data descriptive of a simulated trajectory of a unique dynamic object. The parameters can be evaluated by an objective function to refine the parameters and train the machine-learned model.

    Systems and methods for simulating dynamic objects based on real world data

    公开(公告)号:US12141995B2

    公开(公告)日:2024-11-12

    申请号:US17388372

    申请日:2021-07-29

    Abstract: Systems and methods for generating simulation data based on real-world dynamic objects are provided. A method includes obtaining two- and three-dimensional data descriptive of a dynamic object in the real world. The two- and three-dimensional information can be provided as an input to a machine-learned model to receive object model parameters descriptive of a pose and shape modification with respect to a three-dimensional template object model. The parameters can represent a three-dimensional dynamic object model indicative of an object pose and an object shape for the dynamic object. The method can be repeated on sequential two- and three-dimensional information to generate a sequence of object model parameters over time. Portions of a sequence of parameters can be stored as simulation data descriptive of a simulated trajectory of a unique dynamic object. The parameters can be evaluated by an objective function to refine the parameters and train the machine-learned model.

    Sparse convolutional neural networks

    公开(公告)号:US12210344B2

    公开(公告)日:2025-01-28

    申请号:US18513119

    申请日:2023-11-17

    Abstract: The present disclosure provides systems and methods that apply neural networks such as, for example, convolutional neural networks, to sparse imagery in an improved manner. For example, the systems and methods of the present disclosure can be included in or otherwise leveraged by an autonomous vehicle. In one example, a computing system can extract one or more relevant portions from imagery, where the relevant portions are less than an entirety of the imagery. The computing system can provide the relevant portions of the imagery to a machine-learned convolutional neural network and receive at least one prediction from the machine-learned convolutional neural network based at least in part on the one or more relevant portions of the imagery. Thus, the computing system can skip performing convolutions over regions of the imagery where the imagery is sparse and/or regions of the imagery that are not relevant to the prediction being sought.

Patent Agency Ranking