-
1.
公开(公告)号:US20240427022A1
公开(公告)日:2024-12-26
申请号:US18672986
申请日:2024-05-23
Applicant: Aurora Operations, Inc.
Inventor: Raquel Urtasun , Min Bai , Shenlong Wang
IPC: G01S17/931 , G06T7/10 , G06T7/70 , G06T17/00 , G06T17/10 , G06V10/26 , G06V10/80 , G06V20/56 , G06V20/58
Abstract: Systems and methods for identifying travel way features in real time are provided. A method can include receiving two-dimensional and three-dimensional data associated with the surrounding environment of a vehicle. The method can include providing the two-dimensional data as one or more input into a machine-learned segmentation model to output a two-dimensional segmentation. The method can include fusing the two-dimensional segmentation with the three-dimensional data to generate a three-dimensional segmentation. The method can include storing the three-dimensional segmentation in a classification database with data indicative of one or more previously generated three-dimensional segmentations. The method can include providing one or more datapoint sets from the classification database as one or more inputs into a machine-learned enhancing model to obtain an enhanced three-dimensional segmentation. And, the method can include identifying one or more travel way features based at least in part on the enhanced three-dimensional segmentation.
-
公开(公告)号:US20250002050A1
公开(公告)日:2025-01-02
申请号:US18883299
申请日:2024-09-12
Applicant: Aurora Operations, Inc.
Inventor: Bin Yang , Ming Liang , Wenyuan Zeng , Min Bai , Raquel Urtasun
Abstract: Techniques for improving the performance of an autonomous vehicle (AV) by automatically annotating objects surrounding the AV are described herein. A system can obtain sensor data from a sensor coupled to the AV and generate an initial object trajectory for an object using the sensor data. Additionally, the system can determine a fixed value for the object size of the object based on the initial object trajectory. Moreover, the system can generate an updated initial object trajectory, wherein the object size corresponds to the fixed value. Furthermore, the system can determine, based on the sensor data and the updated initial object trajectory, a refined object trajectory. Subsequently, the system can generate a multi-dimensional label for the object based on the refined object trajectory. A motion plan for controlling the AV can be generated based on the multi-dimensional label.
-
公开(公告)号:US12116015B2
公开(公告)日:2024-10-15
申请号:US17528559
申请日:2021-11-17
Applicant: Aurora Operations, Inc.
Inventor: Bin Yang , Ming Liang , Wenyuan Zeng , Min Bai , Raquel Urtasun
CPC classification number: B60W60/0027 , G05D1/0221 , G05D1/0231 , G06N20/00 , B60W2554/4026 , B60W2554/4029 , B60W2554/4041 , B60W2554/4044 , B60W2556/45
Abstract: Techniques for improving the performance of an autonomous vehicle (AV) by automatically annotating objects surrounding the AV are described herein. A system can obtain sensor data from a sensor coupled to the AV and generate an initial object trajectory for an object using the sensor data. Additionally, the system can determine a fixed value for the object size of the object based on the initial object trajectory. Moreover, the system can generate an updated initial object trajectory, wherein the object size corresponds to the fixed value. Furthermore, the system can determine, based on the sensor data and the updated initial object trajectory, a refined object trajectory. Subsequently, the system can generate a multi-dimensional label for the object based on the refined object trajectory. A motion plan for controlling the AV can be generated based on the multi-dimensional label.
-
4.
公开(公告)号:US12248075B2
公开(公告)日:2025-03-11
申请号:US18672986
申请日:2024-05-23
Applicant: Aurora Operations, Inc.
Inventor: Raquel Urtasun , Min Bai , Shenlong Wang
IPC: G01S17/931 , G06T7/10 , G06T7/70 , G06T17/00 , G06T17/10 , G06V10/26 , G06V10/80 , G06V20/56 , G06V20/58
Abstract: Systems and methods for identifying travel way features in real time are provided. A method can include receiving two-dimensional and three-dimensional data associated with the surrounding environment of a vehicle. The method can include providing the two-dimensional data as one or more input into a machine-learned segmentation model to output a two-dimensional segmentation. The method can include fusing the two-dimensional segmentation with the three-dimensional data to generate a three-dimensional segmentation. The method can include storing the three-dimensional segmentation in a classification database with data indicative of one or more previously generated three-dimensional segmentations. The method can include providing one or more datapoint sets from the classification database as one or more inputs into a machine-learned enhancing model to obtain an enhanced three-dimensional segmentation. And, the method can include identifying one or more travel way features based at least in part on the enhanced three-dimensional segmentation.
-
-
-