Abstract:
Provided herein are systems, methods and apparatuses for an in vivo surgical device that uses tomographic imaging to guide the process of surgical incisions for cell, biologics and drug delivery; the image guided system guides the process of delivery with comprehensive real-time processing with the ability to seal the location of delivery and offer laser-tissue modification via a co-aligned tissue modification beam on tissue without tissue damage to adjacent critical or delicate structures.
Abstract:
Apparatus and methods for tissue excision. In certain aspects, the apparatus and methods include an annular converging laser beam. The annular converging laser beam can be directed to a surface of a tissue and displace a portion of the tissue in a single or multiple laser pulses. In particular aspects, the dosimetry of the laser beam (e.g. the beam shape, pulse energy and pulse duration) can be controlled to eject the portion of the tissue in a manner to reduce damage to the displaced tissue and the surrounding tissue.
Abstract:
A novel contrast mechanism for diagnosing diseased tissue using Ultrasound, Doppler Ultrasonography, Optical Coherence Tomography, or optical Doppler tomography coupled with an externally applied temporally oscillating high-strength magnetic field.
Abstract:
A catheter imaging probe for a patient. The probe includes a conduit through with energy is transmitted. The probe includes a first portion through which the conduit extends. The probe includes a second portion which rotates relative to the conduit to redirect the energy from the conduit. A method for imaging a patient. The method includes the steps of inserting a catheter into the patient. There is the step of rotating a second portion of the catheter relative to a conduit extending through a first portion of the catheter, which redirects the energy transmitted through the conduit to the patient and receives the energy reflected back to the second portion from the patient and redirects the reflected energy to the conduit.
Abstract:
Exemplary embodiments of the present disclosure apparatus and methods that provide for subtractive material processing, including efficient and precise ablation of tissues. Certain embodiments include a first laser configured to direct a first pulse of energy at a first wavelength to a region of tissue; a second laser configured to direct a second pulse of energy at a second wavelength to the region of tissue; and a control system configured to control operation of the first laser and the second laser.