Abstract:
A downhole property measurement apparatus includes an optical fiber having a series fiber Bragg gratings with interleaved resonant wavelengths such that adjacent fiber Bragg gratings have different resonant wavelengths and a difference between adjacent resonant wavelengths is greater than a dynamic wavelength range of each of the adjacent fiber Bragg gratings. An optical interrogator is in optical communication with the optical fiber and configured to emit a frequency domain light signal having a swept wavelength for a first time duration and a chirp having a modulation of amplitude with a varying of wavelength for a second time duration that is less than the first time duration. A return light signal is transformed by the optical interrogator into a time domain to determine a resonant wavelength shift and corresponding location of each of the gratings. A processor converts the resonant wavelength shifts into the downhole property.
Abstract:
An apparatus for determining a property, the apparatus including: an optical fiber having a series of fiber Bragg gratings, each fiber Bragg grating in the series being characterized by a light reflection frequency at which the fiber Bragg grating reflects light; wherein: the light reflection frequency for each fiber Bragg grating is different from the light reflection frequency of each adjacent fiber Bragg grating to minimize resonance of light between at least two of the fiber Bragg gratings in the series; at least two fiber Bragg gratings in the series have light reflection frequencies that overlap; and a change in the light reflection frequency of each fiber Bragg grating in the series is related to the property at the location of the each fiber Bragg grating.
Abstract:
An optical sensing member within the anullus zone of a well is disclosed, which sensing member determines the level of debris in the well. When debris accumulates within the anullus zone, said sensing member returns a signal indicative of the level of such debris within the zone. The optical sensing member may include an optical fiber and/or any known optical sensors configured to determine strain, pressure, shape, force, and/or temperature.
Abstract:
A multi-core optical fiber pressure sensor is described, which sensor includes an optical fiber having at least two cores, wherein the cores have collocated measurement portions, for example in-fiber interferometers or Bragg Grating portions. In an exemplary embodiment, the fiber is arranged such that a pressure induced force will act on the multi-core fiber at said collocated position, affecting the light guiding cores in a different manner. In another exemplary embodiment, the optical fiber is configured to bend in response to pressure changes.
Abstract:
An optical fiber resistant to hydrogen-induced attenuation losses at both relatively low and relatively high temperatures includes a substantially pure silica core and a hydrogen retarding layer. The hydrogen retarding coating may be made of carbon, metal, or silicon nitride. The fiber may also include a cladding layer, a second silica layer, and a protective outer sheath.
Abstract:
A system for locating an interface between a first material and a second material including one or more acoustic sensing elements operatively arranged to measure a characteristic of one or more acoustic signals at a plurality of locations along a length thereof. An instrumentation unit is coupled with the one or more acoustic sensing elements, and arranged to determine a difference between at least a first value of the characteristic measured at a first location and a second value of the characteristic measured at a second location of the plurality of locations for identifying the interface between the first material and the second material as being located between the first and second locations if the difference is greater than a preselected threshold amount. A method of locating an interface is also included.
Abstract:
A hydrogen-resistant optical fiber particularly well-suitable for downhole applications comprises a relatively thick pure silica core and a depressed-index cladding layer. Interposed between the depressed-index cladding layer and the core is a relatively thin germanium-doped interface. By maintaining a proper relationship between the pure silica core diameter and the thickness of the germanium-doped interface, a majority (preferably, more than 65%) of the propagating signal can be confined within the pure silica core and, therefore, be protected from hydrogen-induced attenuation problems associated with the presence of germanium (as is common in downhole fiber applications). The hydrogen-resistant fiber of the present invention can be formed to include one or more Bragg gratings within the germanium-doped interface, useful for sensing applications.
Abstract:
The present invention is directed toward a fiber optic position and shape sensing device and the method of use. The device comprises an optical fiber means. The optical fiber means comprises either at least two single core optical fibers or a multicore optical fiber having at least two fiber cores. In either case, the fiber cores are spaced apart such that mode coupling between the fiber cores is minimized. An array of fiber Bragg gratings are disposed within each fiber core and a frequency domain reflectometer is positioned in an operable relationship to the optical fiber means. In use, the device is affixed to an object. Strain on the optical fiber is measured and the strain measurements correlated to local bend measurements. Local bend measurements are integrated to determine position and/or shape of the object.
Abstract:
An optical fiber extends down hole from an OFDR. A first set of sensors with a centrally-located reference reflector is disposed over a first fiber length, and a second set of sensors with a centrally-located reference reflector is disposed over a second fiber length. The sensors of the first and second sensing lengths are positioned at slightly offset positions from the reference reflectors so as to interleave the reflected signals. Additional sensing lengths may be similarly interleaved. The system is used by sending an optical signal along the optical fiber, detecting a reflected optical signal, separating the optical signal into component signals, and extrapolating a well condition therefrom. Another method includes creating a low frequency signal component in a reflected optical signal by placing at least one sensor beyond a Nyquist sampling distance limit, detecting the low frequency signal component, and extrapolating a well condition therefrom.
Abstract:
An optical fiber containing one or more random modulations capable of reflecting one or more random wavelengths of light passing through the optical fiber is provided. Each modulation is a section of the optical fiber in which the refractive index has been modified or a section of random refractive index optical fiber that has been spliced into the optical fiber. The optical fiber is produced by modifying the refractive index of at least one portion of the optical fiber through photo-etching, photo-bleaching, ultraviolet radiation exposure or splicing. The optical fiber containing the random modulation is used to measure one or more engineering parameters by locating the section or portion of the optical fiber containing the random modulation in an area where the engineering parameter is to be measured and measuring the engineering parameter using optical frequency domain reflectometry.