Abstract:
A method of logging in a health information tele-monitoring device by using a personal portable device. The method includes issuing a security key embedded in a health information tele-monitoring device to a personal portable device, storing the security key issued by the health information tele-monitoring device in the user's personal portable device; requesting the user's personal portable device to authenticate the health information tele-monitoring device in order to connect the health information tele-monitoring device to a healthcare server; and authorizing access of the health information tele-monitoring device to the healthcare server.
Abstract:
An apparatus and method of providing blood glucose management information includes a determination unit that determines a similarity of a blood glucose change pattern of a user by comparing blood glucose information obtained from the user and stored blood glucose information, an extraction unit that extracts at least one piece of blood glucose information from the stored blood glucose information according to the similarity and generates extracted blood glucose information, and an interface unit which provides the blood glucose management information, which corresponds to the extracted blood glucose information, to the user.
Abstract:
A method of displaying health information of a user, the method including: monitoring if a sharing request for a health information of a user is made by an external device, which provides a web page representing the health information of the user in the form of an image; downloading a captured image of the web page from the external device if the sharing request for the health information of the user is made; and displaying the downloaded captured image.
Abstract:
A patient management method includes; collecting initial information about a patient, monitoring the collected initial information to determine whether the collected initial information corresponds to an event indicating an abnormal condition of the patient, selectively collecting additional information about the patient based on a result of the monitoring, and performing medical processing with regard to the patient based on at least one of the collected initial information and the additional information.
Abstract:
Provided is a Field-Effect Transistor (FET)-based biosensor including: a substrate; a source and a drain, disposed on the substrate, having opposite polarity to the substrate; a gate, disposed on the substrate, contacting the source and the drain; and an inorganic film capable of binding with a biomolecule, disposed on a surface of the gate. A method of manufacturing the FET-based biosensor and a method of detecting a biomolecule using the FET-based biosensor is also provided. The FET-based biosensor can be manufactured using a semiconductor fabrication process without performing an additional process. Therefore, the inorganic film can be selectively deposited on a surface of a specific gate of a single FET, or on the surfaces of some gates of a plurality of FETs using patterning. Furthermore, the FET-based biosensor can be used to effectively detect trace amounts of a target biomolecule in a sample.
Abstract:
Provided are a FET-based sensor for detecting an ionic material, an ionic material detecting device including the FET-based sensor, and a method of detecting an ionic material using the FET-based sensor. The FET-based sensor includes: a sensing chamber including a reference electrode and a plurality of sensing FETs; and a reference chamber including a reference electrode and a plurality of reference FETs. The method includes: flowing a first solution into and out of the sensing chamber and the reference chamber of the FET-based sensor; flowing a second solution expected to contain an ionic material into and out of the sensing chamber while continuously flowing the first solution into and out of the reference chamber; measuring a current in a channel region between the source and drain of each of the sensing and reference FETs; and correcting the current of the sensing FETs.
Abstract:
An apparatus and method for detecting ionic materials includes a sensing electrode which contacts a liquid sample and detects a sensing voltage corresponding to a surface potential which is changed by a concentration of ionic materials in the liquid sample, a first switching transistor having a first terminal connected to the sensing electrode and a second terminal connected to a first node, a second switching transistor having a first terminal connected to a reset voltage and a second terminal connected to the first node, and a sensing transistor having a gate connected to the first node.
Abstract:
Provided are a sensing switch and a sensing method using the same. The sensing switch includes: a substrate; a supporter on the substrate; a sensing plate that is connected to a side of the supporter and is in parallel with the substrate by a predetermined distance; a receptor binding region on an upper surface of an end portion of the sensing plate; an electric or magnetic field generation device that induces deflection of the sensing plate when a receptor bound to the receptor binding region is selectively bound to an electrically or magnetically active ligand; and a pair of switching electrodes that are separated by a predetermined distance and is connected when the sensing plate contacts the substrate due to the deflection of the sensing plate. A target material need not be labelled, a signal processing of a fluorescent or electrical detection signal using an analysis apparatus is not required, and a signal can be directly decoded by confirming whether a current flows through the switch.
Abstract:
Provided are a sensing switch and a sensing method using the same. The sensing switch includes: a substrate; a supporter on the substrate; a sensing plate that is connected to a side of the supporter and is in parallel with the substrate by a predetermined distance; a receptor binding region on an upper surface of an end portion of the sensing plate; an electric or magnetic field generation device that induces deflection of the sensing plate when a receptor bound to the receptor binding region is selectively bound to an electrically or magnetically active ligand; and a pair of switching electrodes that are separated by a predetermined distance and is connected when the sensing plate contacts the substrate due to the deflection of the sensing plate. A target material need not be labelled, a signal processing of a fluorescent or electrical detection signal using an analysis apparatus is not required, and a signal can be directly decoded by confirming whether a current flows through the switch.
Abstract:
A gas sensor includes a substrate having a plurality of through holes, a pair of electrodes disposed on the substrate, wherein the plurality of through holes are disposed between the pair of electrodes and a plurality of carbon nanotubes covering at least a portion of the plurality of through holes, wherein at least a portion of the plurality of carbon nanotubes is connected with the pair of electrodes.