Abstract:
To generate a dot pattern whose deterioration of a feeling of granularity, density unevenness, and streaks are unlikely to be recognized visually by more effectively suppressing a change of an overlap of ink droplets on a printing medium. Halftone image data representing a dot pattern of each of two or more kinds of dot different in density reproduction is acquired. Then, in a case where there is a possibility that the contact state between dots changes due to a landed-dot shift of ink in a plurality of specific dots on a condition that dots are formed in accordance with a dot pattern in the halftone image data, the plurality of specific dots is replaced with dots of another kind whose number is less than or equal to that of the plurality of specific dots.
Abstract:
Provided is quantization processing that can reduce color development defect due to dot overlapping and can output an image with reduced granularity when the image is printed by using multiple kinds of colorants. To this end, dot arrangement information for a colorant for which dot arrangement is already determined among multiple kinds of colorants is acquired for a predetermined region of the image, and an evaluation value of each pixel included in the predetermined region is derived based on the arrangement information. In addition, for the predetermined region, a target value for a predetermined colorant for which dot arrangement is yet to be determined is derived based on the image. Then, whether or not to arrange a dot of the predetermined colorant in the predetermined region is determined based on the target value and the evaluation value.
Abstract:
The present invention is a color conversion processing apparatus that converts an input image signal value into an output value of an actual color material used in an image forming apparatus, and includes: a derivation unit configured to derive an output value corresponding to the input image signal value for a plurality of virtual color materials smaller in number than the number of actual color materials; and a conversion unit configured to convert the derived output values of the plurality of virtual color materials into the output values of the actual color materials, and each of the plurality of virtual color materials has a density corresponding to each wavelength band obtained by dividing a wavelength range reproduced by the actual color materials being output into a plurality of wavelength bands, and the derivation unit derives the output value corresponding to the input image signal value based on the density corresponding to each of the wavelength bands for the plurality of virtual color materials.
Abstract:
Appearance data including at least color information and gloss information of an object to be reproduced is inputted. Color mapping is performed to map the color information into a color reproducible range of an appearance reproduction apparatus, based on information indicating an appearance reproducible range of the appearance reproduction apparatus. A gloss reproducible range, in which the appearance reproduction apparatus can reproduce gloss while keeping the color information after the color mapping, is obtained based on the information indicating the appearance reproducible range. Gloss mapping is performed to map the gloss information into the gloss reproducible range. An output signal to be outputted to the appearance reproduction apparatus is generated based on mapped appearance data including the color information after the color mapping and the gloss information after the gloss mapping.
Abstract:
A color conversion processing apparatus that converts a signal value of an input image into an output value of an actual color material used in an image forming apparatus, and includes: an acquisition unit configured to acquire a printing setting for the input image; and a conversion unit configured to convert the signal value of the input image into the output value of the actual color material in accordance with the acquired printing setting, and the conversion unit performs the conversion while maintaining a relationship between the signal value of the input image and output values of a virtual color material, the number of virtual color materials is smaller than the number of actual color materials and the respective virtual color materials have respective densities corresponding to respective wavelength bands obtained by dividing a wavelength range reproduced by the actual color materials being output into a plurality of wavelength bands, the output values of the plurality of virtual color materials are determined based on the respective densities corresponding to the respective wavelength bands, and the relationship is a relationship that increases monotonically and whose secondary differential does not become negative.
Abstract:
Determination information is obtained to determine a degradation characteristic of sharpness of an image formed by an image forming apparatus. One of a plurality of recovery processing parameters used to recover sharpness of an image is selected based on the determination information, and characteristics of the plurality of recovery processing parameters are different from each other. Recovery processing of sharpness is performed on image data using the selected recovery processing parameter. When the degradation characteristics of sharpness are visually and substantially the same, the same recovery processing parameter is selected.
Abstract:
Based on scanned data obtained by a scan unit reading a first chart printed and output by a printing unit and colorimetric data obtained by a colorimetry unit measuring the first chart, correction information for correcting a sensed value of the scan unit is generated. The first chart includes a patch extending in a main scanning direction substantially perpendicular to a sheet conveyance direction and having a uniform density, and a position adjustment pattern formed outside the patch for identifying a position in the main scanning direction on the patch. A first generation unit generates the correction information by causing a pixel position of an end portion of the patch in the scanned data and a colorimetry position of an end portion of the patch in the colorimetric data to correspond to each other and determining a corrected value of the sensed value at a specific pixel position.
Abstract:
An object is to enable highly accurate density unevenness correction while suppressing a reduction in productivity of printing accompanying correction value calculation for density unevenness correction. In the image processing apparatus, density correction information that specifies an output tone value for implementing a target density for an input tone value for each nozzle and which does not include the influence by a non-ejectable nozzle that cannot eject ink normally is acquired. In a case where a non-ejectable nozzle is detected during printing processing, output tone values corresponding to the detected non-ejectable nozzle and peripheral nozzles thereof among output tone values specified in the density correction information are changed.
Abstract:
Provided is quantization processing that can reduce color development defect due to dot overlapping and can output an image with reduced granularity when the image is printed by using multiple kinds of colorants. To this end, dot arrangement information for a colorant for which dot arrangement is already determined among multiple kinds of colorants is acquired for a predetermined region of the image, and an evaluation value of each pixel included in the predetermined region is derived based on the arrangement information. In addition, for the predetermined region, a target value for a predetermined colorant for which dot arrangement is yet to be determined is derived based on the image. Then, whether or not to arrange a dot of the predetermined colorant in the predetermined region is determined based on the target value and the evaluation value.
Abstract:
Provided is quantization processing that can reduce color development defect due to dot overlapping and can output an image with reduced granularity when the image is printed by using multiple kinds of colorants. To this end, dot arrangement information for a colorant for which dot arrangement is already determined among multiple kinds of colorants is acquired for a predetermined region of the image, and an evaluation value of each pixel included in the predetermined region is derived based on the arrangement information. In addition, for the predetermined region, a target value for a predetermined colorant for which dot arrangement is yet to be determined is derived based on the image. Then, whether or not to arrange a dot of the predetermined colorant in the predetermined region is determined based on the target value and the evaluation value.