Abstract:
An autonomous vehicle is disclosed. The vehicle comprises a chassis, two or more drive wheels extending below the chassis, a drive motor housed within the chassis for driving the drive wheels, and a payload surface on top of the chassis for carrying a payload. An illumination system, for emitting light from at least one portion of the chassis, is mounted substantially around the entire perimeter of the chassis. The illumination system may be implemented using an array of light-emitting diodes (“LEDs”) that are arranged as segments. For example, there may be “headlight” segments on the front left and front right corners of the chassis.
Abstract:
A method of controlling an illumination system for an autonomous vehicle is provided. The method includes: storing, in a memory, a plurality of lighting pattern definitions for controlling the illumination system; receiving, at a processor connected to the memory and the illumination system, state data defining a current state of the autonomous vehicle; at the processor, determining whether each of a plurality of ranked sub-states is active in the autonomous vehicle, based on the state data; at the processor, selecting one of the lighting pattern definitions corresponding to the highest ranked sub-state determined to be active in the autonomous vehicle; and controlling the illumination system according to the selected lighting pattern definition.
Abstract:
An autonomous vehicle is disclosed. The vehicle comprises a chassis, two or more drive wheels extending below the chassis, a drive motor housed within the chassis for driving the drive wheels, and a payload surface on top of the chassis for carrying a payload. An illumination system, for emitting light from at least one portion of the chassis, is mounted substantially around the entire perimeter of the chassis. The illumination system may be implemented using an array of light-emitting diodes (“LEDs”) that are arranged as segments. For example, there may be “headlight” segments on the front left and front right corners of the chassis.
Abstract:
An autonomous vehicle is disclosed. The vehicle comprises a chassis, two or more drive wheels extending below the chassis, a drive motor housed within the chassis for driving the drive wheels, and a payload surface on top of the chassis for carrying a payload. An illumination system, for emitting light from at least one portion of the chassis, is mounted substantially around the entire perimeter of the chassis. The illumination system may be implemented using an array of light-emitting diodes (“LEDs”) that are arranged as segments. For example, there may be “headlight” segments on the front left and front right corners of the chassis.
Abstract:
An autonomous vehicle is disclosed. The vehicle comprises a chassis, two or more drive wheels extending below the chassis, a drive motor housed within the chassis for driving the drive wheels, and a payload surface on top of the chassis for carrying a payload. An illumination system, for emitting light from at least one portion of the chassis, is mounted substantially around the entire perimeter of the chassis. The illumination system may be implemented using an array of light-emitting diodes (“LEDs”) that are arranged as segments. For example, there may be “headlight” segments on the front left and front right corners of the chassis.
Abstract:
An autonomous vehicle is disclosed. The vehicle comprises a chassis, two or more drive wheels extending below the chassis, a drive motor housed within the chassis for driving the drive wheels, and a payload surface on top of the chassis for carrying a payload. An illumination system, for emitting light from at least one portion of the chassis, is mounted substantially around the entire perimeter of the chassis. The illumination system may be implemented using an array of light-emitting diodes (“LEDs”) that are arranged as segments. For example, there may be “headlight” segments on the front left and front right corners of the chassis.
Abstract:
Systems, methods and apparatus are provided for controlling self-driving vehicles. The system comprises: a processor, a memory storing operational constraints for a self-driving vehicle, and a communications interface. A plurality of path portions are assembled at the system to define an area in a physical space in which the self-driving vehicle is to navigate, each of the plurality of path portions associated with a respective given subset of operational constraints stored in the memory. The system provides, to the self-driving vehicle, respective given subsets of the operational constraints of the plurality of path portions that define the area, and associated positions of each of the plurality of path portions in the physical space.