Abstract:
The present application in some embodiments relates to methods for reducing noise and/or clutter when measuring a spectrum, particularly but not only for OCT imaging. In some embodiments a light source is synchronized with a detector. For example a narrow band light source is synchronized with a narrow band detector. For example, the light source may scan over multiple frequency bands and/or the detector may be tuned to a frequency band synergetic to the band of the light source. For example the light source and detector may be tuned to overlapping narrow bands. Optionally the detector has a sensor set for each frequency band. Optionally some sensor sets are individually resettable. For example each set may have a reset circuit. For example, a sensor set for a band not currently being measured is deactivated.
Abstract:
Systems and methods for scanning an organ or other extended volumes of body tissue using one or more Optical Coherence Tomography (OCT) probes are presented. Some embodiments provide equipment for managing a plurality of OCT penetrations into a tissue or organ, and provide some or all of the following: detection and/or control of OCT probe positions and orientations (and optionally, that of other imaging modalities) detecting changes in body tissue positions, registering and mapping OCT scan results and optionally input from other imaging modalities, integrating OCT scan information and/or information from other modalities and/or recorded historical information, optionally some or all of the above with reference to a common coordinate system. Some embodiments comprise a display for displaying some or all of this information. In some embodiments, inferences based on observed portions of the organ relative to non-observed portions of an organ are displayed.