Abstract:
A graphical user interface includes GUI elements configured for defining discretized base geometry data for a model of a physical system, receiving a first input representing a user instruction to add a perfectly matched layer to the model, receiving a second input representing the user selection of boundaries that define a base geometry, and receiving a third input representing extra geometry meshing instructions. Extra geometry line segment data is discretized representing an outward direction of a PML from the boundary according to the extra geometry meshing instructions. Weak form expressions representing a wave-related phenomena are formed based on received PML settings and physics settings parameterized using discretized base geometry data and discretized extra geometry data. Matrix data are generated based on the formed weak form expressions. A solution to a simulation of the wave-related phenomena of the model is generated based on the formed weak form expressions. A graphical representation of the solution is generated for display on the GUI.
Abstract:
A simulation apparatus for adding extra geometries to a model of a physical system. The apparatus is configured to modify a geometry of a model of a physical system represented in terms of a combined set of equations. Instructions on the apparatus cause one or more processors to perform, upon execution, acts comprising: (i) receiving a base geometry of the physical system, (ii) receiving one or more extra geometries associated with the base geometry, (iii) determining first geometric entities of the base geometry and second geometric entities of the extra geometry, (iv) adding the extra geometries to the base geometry by computing a product geometry of the determined first geometric entities and the second geometric entities, (v) generating an updated combined set of equations including representations of the product geometry, and (vi) generating a graphical representation of the product geometry, the graphical representation configured for display on the display device.
Abstract:
Systems and methods for modeling physical systems include displaying geometric representation of a physical system on a physics simulation system. User-selection inputs received indicate, for mesh elements, selections of dependent variable shape function spaces representing dependent variables. Geometry shape function space options for simulating the physical system are determined that are common to mesh elements and include a serendipity shape function space of second order or higher. A determined geometry shape function space option is a subset of a combination of the dependent variable shape function spaces and satisfies accuracy criteria based on an accuracy ordering of shape function spaces. A finite element mesh for the physical system is created based on the mesh elements, a selected geometry shape function space, and the selection of dependent variable shape function spaces. A solution to a finite element simulation of the physical system being modeled is generated and the geometric representation displayed.
Abstract:
Disclosed are techniques for representing and modeling systems in which each system corresponds to an application mode. This may be done for one or more geometries using local and/or non-local couplings. For each application mode, physical quantities are modeled and may be defined using a graphical user interface. Physical properties may be used to model the physical quantities of each system. The physical properties may be defined in terms of numerical values or constants, and mathematical expressions that may include numerical values, space coordinates, time coordinates, and actual physical quantities. Physical quantities and any associated variables may apply to some or all of a geometric domain, and may also be disabled in other parts of a geometrical domain. Partial differential equations describe the physical quantities. One or more application modes may be combined using an automated technique into a combined system of partial differential equations as a multiphysics model.
Abstract:
A simulation apparatus for adding extra geometries to a model of a physical system. The apparatus is configured to modify a geometry of a model of a physical system represented in terms of a combined set of equations. Instructions on the apparatus cause one or more processors to perform, upon execution, acts comprising: (i) receiving a base geometry of the physical system, (ii) receiving one or more extra geometries associated with the base geometry, (iii) determining first geometric entities of the base geometry and second geometric entities of the extra geometry, (iv) adding the extra geometries to the base geometry by computing a product geometry of the determined first geometric entities and the second geometric entities, (v) generating an updated combined set of equations including representations of the product geometry, and (vi) generating a graphical representation of the product geometry, the graphical representation configured for display on the display device.
Abstract:
A simulation apparatus for adding extra geometries to a model of a physical system. The apparatus is configured to modify a geometry of a model of a physical system represented in terms of a combined set of equations. Instructions on the apparatus cause one or more processors to perform, upon execution, acts comprising: (i) receiving a base geometry of the physical system, (ii) receiving one or more extra geometries associated with the base geometry, (iii) determining first geometric entities of the base geometry and second geometric entities of the extra geometry, (iv) adding the extra geometries to the base geometry by computing a product geometry of the determined first geometric entities and the second geometric entities, (v) generating an updated combined set of equations including representations of the product geometry, and (vi) generating a graphical representation of the product geometry, the graphical representation configured for display on the display device.
Abstract:
Disclosed are techniques for representing and modeling one or more systems in which each system corresponds to an application mode. This may be done for one or more geometries using local and/or non-local couplings. For each application mode, physical quantities are modeled and may be defined using a graphical user interface. Physical properties may be used to model the physical quantities of each system. The physical properties may be defined in terms of numerical values or constants, and mathematical expressions that may include numerical values, space coordinates, time coordinates, and actual physical quantities. Physical quantities and any associated variables may apply to some or all of a geometric domain, and may also be disabled in other parts of a geometrical domain. Partial differential equations describe the physical quantities. One or more application modes may be combined using an automated technique into a combined system of partial differential equations as a multiphysics model. A portion of the physical quantities and variables associated with the combined system may be selectively solved for. Also described are methods for computing the stiffness matrix, residual vector, constraint matrix, and constraint residual vector for the finite element discretization of a system of partial differential equations in weak form that includes local and non-local variables coupling multiple geometries.