Abstract:
A silica-titania glass substrate comprising: (i) a composition comprising 5 weight percent to 10 weight percent TiO2; (ii) a coefficient of thermal expansion (CTE) at 20° C. in a range from −45 ppb/K to +20 ppb/K; (iii) a crossover temperature (Tzc) in a range from 10° C. to 50° C.; (iv) a slope of CTE at 20° C. in a range from 1.20 ppb/K2 to 1.75 ppb/K2; (v) a refractive index variation of less than 140 ppm; and (vi) 600 ppm OH group concentration or greater. The substrate can have a mass of 1 kg or greater and less than 0.05 gas inclusions per cubic inch via a method comprising (i) forming the substrate from soot particles comprising SiO2 and TiO2, and (ii) subjecting the substrate to an environment having an elevated temperature and an elevated pressure for a period of time until the substrate comprises less than 0.05 gas inclusions per cubic inch.
Abstract:
A glass article for use in Extreme Ultra-Violet Lithography (EUVL) is provided. The glass article includes a silica-titania glass having a compositional gradient through the glass article, the compositional gradient being defined by the functions: [TiO2]=(c+f(x,y,z)), and [SiO2]=(100−{c+f(x,y,z)}−δ(x,y,z)) wherein [TiO2] is the concentration of titania in wt. %, [SiO2] is the concentration of silica in wt. %, c is the titania concentration in wt. % for a predetermined zero crossover temperature (Tzc), f(x, y, z) is a function in three-dimensional space that defines the difference in average composition of a volume element centered at the coordinates (x, y, z) with respect to c, and δ(x, y, z) is a function in three-dimensional space that defines the sum of all other components of a volume element centered at the coordinates (x, y, z).
Abstract:
A titania and silica glass body that includes a first glass section having a crossover temperature of about 10° C. to about 60° C. and a second glass section comprising an average striae height of about 10 microns or less, wherein the average striae height of the second glass section is less than an average striae height of the first glass section, and wherein the first glass section and the second glass section form a single, monolithic glass body.
Abstract:
A glass comprising titania and silica is disclosed. A plot of average hydroxyl concentration of each segment of a plurality of segments vs. distance along the glass is provided by: y=Ax2+Bx+C, wherein A (in ppm/mm2) is in a range from about 0.0 to about −0.1, B (in ppm/mm) is in a range from about −10 to about 10, C (in ppm) is about 450 or less, y is the average hydroxyl concentration (in ppm), and x is distance (in mm) such that the hydroxyl concentration of each segment is measured using a Fourier transform infrared spectroscopy in transmission and the plot extends a distance of about 50 mm or more along the glass.
Abstract:
A process for producing a glass body, the process including flowing oxygen gas from a burner in a furnace at a flow rate of greater than 12.0 standard liters per minute and flowing a precursor gas mixture from the burner. The process further including oxidizing the precursor gas mixture with the oxygen gas to form glass particles and depositing the glass particles on a collection cup to form the glass body.
Abstract:
A glass article for use in Extreme Ultra-Violet Lithography (EUVL) is provided. The glass article includes a silica-titania glass having a compositional gradient through the glass article, the compositional gradient being defined by the functions: [TiO2]=(c+f(x,y,z)), and [SiO2]=(100−{c+f(x,y,z)}−δ(x,y,z)) wherein [TiO2] is the concentration of titania in wt. %, [SiO2] is the concentration of silica in wt. %, c is the titania concentration in wt. % for a predetermined zero crossover temperature (Tzc), f(x, y, z) is a function in three-dimensional space that defines the difference in average composition of a volume element centered at the coordinates (x, y, z) with respect to c, and δ(x, y, z) is a function in three-dimensional space that defines the sum of all other components of a volume element centered at the coordinates (x, y, z).
Abstract:
A glass including silica and titania is disclosed. An average hydroxyl concentration of a plurality segments of the glass is in a range from about 20 ppm to about 450 ppm, an average titania concentration of the plurality of segments is in a range from about 6 wt. % to about 12 wt. %, and each segment of the plurality of segments has a length of about 12.7 mm, a width of about 12.7 mm, and a height of about 7.62 mm. The hydroxyl concentration of each segment is measured using a Fourier transform infrared spectroscopy in transmission, the refractive index is measured using an optical interferometer with a 633 nm operating wavelength and a resolution of 270 microns×270 microns pixel size, and the average titania concentration is determined based upon the measured refractive index.