Abstract:
A glass container for storing pharmaceutical formulations may include a glass body formed from a Type IA or Type IB glass composition according to ASTM Standard E438-92(2011). The glass body may include a wall portion with an inner surface and an outer surface, a heel portion and a floor portion, wherein the inner surface of the glass container is formed by the inner surface of the glass body. The glass body may include at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP . The glass container does not comprise a boron-rich layer on the inner surface of the glass body in as formed condition.
Abstract:
Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.
Abstract:
Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.
Abstract:
Disclosed herein are delamination resistant glass pharmaceutical containers which may include an aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to ISO 720-1985 testing standard. The glass containers may also have a compressive stress layer with a depth of layer of greater than 25 μm. A surface compressive stress of the glass containers may be greater than or equal to 350 MPa. The delamination resistant glass pharmaceutical containers may be ion exchange strengthened and the ion exchange strengthening may include treating the delamination resistant glass pharmaceutical container in a molten salt bath for a time less than or equal to 5 hours at a temperature less than or equal to 450° C.
Abstract:
In embodiments, a delamination resistant glass pharmaceutical package includes a glass body formed from a Type 1 Class glass composition according to ASTM Standard E438-92, the glass body having a wall portion with an inner surface and an outer surface. The glass body may have at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP . An interior region of the glass body may extend from about 10 nm below the inner surface and having a persistent layer homogeneity. The glass body may also have a surface region extending over the inner surface and having a persistent surface homogeneity such that the glass body is resistant to delamination.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and pharmaceutical packaging formed from the same. According to one embodiment, a glass for pharmaceutical packaging includes from about 70 mol. % to about 80 mol. % SiO2; from about 4 mol. % to about 8 mol. % alkaline earth oxide, the alkaline earth oxide comprising MgO and CaO; X mol. % Al2O3, wherein X is from about 4 to about 8; and Y mol. % alkali oxide comprising non-zero amounts of Na2O and K2O, wherein Y is about 9-15 mol. % and a ratio of Y:X is greater than 1.
Abstract:
The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In embodiments, the glass composition may include 74-78 mol. % SiO2; X mol. % Al2O3, wherein X is 5-7; alkaline earth oxide comprising MgO and CaO, wherein: CaO is 0.1-1.0 mol. %; MgO is 4-7 mol. %; and a ratio (CaO (mol. %)/(CaO (mol. %)+MgO (mol. %)) is less than or equal to 0.5. The glass composition may further include Y mol. % alkali oxide, wherein the alkali oxide comprises 9-13 mol. % Na2O and less than or equal to 0.4 mol. % of a fining agent. The glass composition may be free of boron and compounds of boron.
Abstract:
Glass pharmaceutical packages comprising glass containers are disclosed. In embodiments, a coated glass pharmaceutical package includes a glass container formed from one of a borosilicate glass composition that meets Type 1 criteria according to USP or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A lubricous coating may be positioned on at least a portion of the exterior surface of the glass container. The portion of the coated glass pharmaceutical package with the lubricous coating has a coefficient of friction that is at least 20% less than an uncoated glass container formed from the same glass composition. A horizontal compression strength of the portion of the coated glass pharmaceutical package with the lubricous coating may be at least 10% greater than an uncoated glass container formed from the same glass composition.
Abstract:
Disclosed herein are delamination resistant glass pharmaceutical containers which may include an aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to ISO 720-1985 testing standard. The glass containers may also have a compressive stress layer with a depth of layer of greater than 25 μm. A surface compressive stress of the glass containers may be greater than or equal to 350 MPa. The delamination resistant glass pharmaceutical containers may be ion exchange strengthened and the ion exchange strengthening may include treating the delamination resistant glass pharmaceutical container in a molten salt bath for a time less than or equal to 5 hours at a temperature less than or equal to 450° C.
Abstract:
A delamination resistant glass pharmaceutical container may include a glass body comprising a borosilicate glass having a Type 1 chemical durability according to USP . At least an inner surface of the glass body may have a delamination factor less than or equal to 10. A thermally stable coating may be positioned around at least a portion of the outer surface of the glass body. The thermally stable coating may be an outermost coating on the outer surface of the glass body and the outer surface of the glass body with the thermally stable coating has a coefficient of friction less than or equal to 0.7. The thermally stable coating comprising at least one of a metal nitride coating, a metal oxide coating, a metal sulfide coating, SiO2, diamond-like carbon, graphene, and a carbide coating.