Abstract:
Disclosed herein is a spectroscopy device incorporating a mid-infrared laser. In one particular embodiment a spectroscopy device is provided including: a substrate; a single mode laser positioned on the substrate; a single mode detector positioned opposite to the single mode laser on the substrate. A gap is formed between the single mode laser and the single mode detector and a substance is positioned in the gap. The single mode laser is configured to output a tunable narrow wavelength of radiation towards the detector and when the single mode laser outputs a wavelength of radiation overlapping one of the substance's rotational-vibrational energy levels, the substance at least partially absorbs the radiation. The single mode detector is configured to measure the amount of narrow wavelength radiation that is not absorbed by the substance between the single mode detector and the single mode laser.
Abstract:
An optical parametric oscillator (OPO) including a thin film waveguide including a material having a second order nonlinear susceptibility generating an electromagnetic field in response to pump electromagnetic field inputted into the thin film waveguide. The electromagnetic field has a first wavelength or first set of wavelengths longer than a second wavelength or second set of wavelengths of the pump electromagnetic field. The thin film waveguide has a thickness on the order of the first wavelength or the first set of wavelengths in the thin film waveguide so as to guide the electromagnetic field along the thin film waveguide.
Abstract:
Quantum cascade (QC) lasers and methods of fabricating such QC lasers are provided. The QC lasers incorporate a DFB grating without requiring the use of relying on epitaxial regrowth processes. The DFB gratings are formed as sidewall gratings along the lateral length of the QC active region, or the DFB gratings are formed atop the lateral length of the QC active region, and wherein the top DFB grating is planarized with a polymeric material.
Abstract:
Quantum cascade (QC) lasers and methods of fabricating such QC lasers are provided. The QC lasers incorporate a DFB grating without requiring the use of relying on epitaxial regrowth processes. The DFB gratings are formed as sidewall gratings along the lateral length of the QC active region, or the DFB gratings are formed atop the lateral length of the QC active region, and wherein the top DFB grating is planarized with a polymeric material.
Abstract:
An optical parametric oscillator (OPO) including a thin film waveguide including a material having a second order nonlinear susceptibility generating an electromagnetic wave in response to pump electromagnetic wave inputted into the thin film waveguide. The electromagnetic wave has a first wavelength or first set of wavelengths longer than a second wavelength or second set of wavelengths of the pump electromagnetic wave. The thin film waveguide has a thickness on the order of the first wavelength or the first set of wavelengths in the thin film waveguide so as to guide the output electromagnetic wave along the thin film waveguide.
Abstract:
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.
Abstract:
A composition sensor for measuring composition of fluid mixtures is presented. The composition sensor includes a plurality of high-brightness emission sources having respective spectrally narrow wavelength emission bands in the infrared region. The wavelength emission bands overlap absorption wavelength bands of the composition. The wavelength emission bands are wavelength multiplexed and time multiplexed prior to emission through a fluid mixture. A single optical detector senses the emitted light. The composition sensor includes arms that can rotate to measure composition at different angular position of a pipe in a lateral section of an oil well. Rotation of the arms is provided by rotation of an element of a mobile vessel to which the arm is rigidly coupled. The rotation of the arms is provided by a rotation of a nose of the mobile vessel that rotates independently from a main body of the mobile vessel.
Abstract:
Single-mode distributed-feedback (DFB) lasers including single mode DFB waveguides with tapered grating structures are provided herein. Tapered grating structures provide for single mode DFB waveguides with predictable single mode operation. Uniform grating structures may provide for single mode operation, however DFB waveguides implementing uniform grating structures may operate at one of two single modes. Advantageously, DFB waveguides with tapered gratings operate with a spectrally narrow single mode at the same predictable single mode for all DFB waveguides with substantially identical specifications. Such predictability may lead to increased yield during manufacture of DFB waveguides with tapered gratings.
Abstract:
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.