Abstract:
Systems, methods, and devices of the various embodiments provide a hoop drive assembly. A hoop drive assembly according to the various embodiments may include one or more toothed rings and one or more motors coupled to the one or more toothed rings. In the various embodiments, rotation of the one or more toothed rings may change an orientation of a turret supported by the hoop drive assembly and/or move a control actuator of a catheter held in a modular plate coupled to the turret.
Abstract:
Systems, methods, and devices of the various embodiments provide linearly stationary catheter drive assemblies enabled to move a catheter's sheath along a linear axis while holding the catheter handle stationary along that linear axis. In the various embodiments, the linearly stationary catheter drive assembly may be configured to move the catheter's sheath along the linear axis while holding the catheter handle stationary along the linear axis and rotating the catheter handle about the linear axis. In an embodiment, a linearly stationary catheter drive assembly may include a loop drive configured to move the catheter sheath along the linear axis. In an embodiment, a linearly stationary catheter drive assembly may include a pinch drive configured to move the catheter sheath along the linear axis.
Abstract:
Systems, methods, and devices of the various embodiments provide a remote controller for a catheter positioning system configured to be operated with a single hand by a catheter positioning system operator. In an embodiment, the remote controller may include a thumb joystick control, first wheel control, and second wheel control. In an embodiment, the remote controller may include various visual indicators and/or haptic feedback mechanisms providing information to a catheter positioning system operator.
Abstract:
Various embodiments enable an introducer for a catheter to be rotated around an axis and/or traversed backward and/or forward along the axis. In various embodiments, positioning of an introducer may be enabled by an introducer support configured to be rotated around an axis and/or extended or retracted along the axis. The introducer may be manually operated and/or operated by motors in a nose cone of a catheter positioning system. In various embodiments, a portion of the introducer support may be configured to flex. In other embodiment, positioning of an introducer may be enabled by an adjustable nose cone of a catheter positioning system.
Abstract:
Embodiments include a spreader and a resealable delivery channel in a catheter positioning system configured to introduce a catheter into the resealable delivery channel. The spreader may have shapes configured to help users insert the spreader and a catheter into the resealable delivery channel and to retain the spreader and the catheter within the resealable delivery channel. The resealable delivery channel may be shaped to accommodate the spreader or catheter. The resealable delivery channel may include flexible plastic lips that are moveable to facilitate insertion of the spreader and a catheter into the resealable delivery channel.
Abstract:
Various embodiments provide a catheter positioning device with components for controlling actuators of the catheter in multiple axes. A catheter may be attached to a sled member by a modular plate with one or more actuator interfaces that may couple with the actuators of a catheter handle. One or more motors or drives in the sled member may move the actuator interfaces of the modular plate to control one or more actuators on the catheter in different axes. In various embodiments the sled member may have a clam shell design in which two or more sides of the sled member close around the catheter handle. In further embodiments, the sled member may include adjustable faces that can fit different types of modular plates and thereby control actuators on different types of the catheter.
Abstract:
Embodiments include removable catheter actuator collars which may connect a catheter actuator on a catheter's handle to a catheter positioning device. The removable catheter actuator collars may allow the catheter to be easily removed from the catheter positioning device by a physician. The removable catheter actuator collars may remain connected with the catheter when removed and may allow the catheter to be easily reconnected to the catheter positioning system. In further embodiments, the removable catheter actuator collars may be annular or ring shaped and secure to a catheter actuator with various mechanisms such as one or more clamps, compression grips, or rotating portions and may remain connected with the catheter when the catheter is removed from the catheter positioning system.
Abstract:
Various embodiments provide systems and methods for controlling a catheter with a catheter positioning device by using a remote controller. As the catheter is advanced by the catheter positioning device, a counterweight may be adjusted to balance the catheter positioning system. In further embodiments, the counterweight may be configured to move to balance a sled member such that any total moment exerted on a sled base remains constant. In further embodiments, the counterweight may be controlled by a control system based on one or more sensors coupled with the catheter positioning system.