Abstract:
A system for performing remote ischemic conditioning includes an inflatable cuff configured to encircle a limb of a subject and a controller removably attached to the cuff. The controller includes a pump; a manifold in fluid communication with the pump; a connector in fluid communication with the manifold and in removable fluid communication with the inflatable cuff; a pressure sensor; and a control circuit configured to implement a remote ischemic conditioning treatment protocol.
Abstract:
A system for performing remote ischemic conditioning includes an inflatable cuff configured to encircle a limb of a subject and a controller removably attached to the cuff. The controller includes a pump; a manifold in fluid communication with the pump; a connector in fluid communication with the manifold and in removable fluid communication with the inflatable cuff; a pressure sensor; and a control circuit configured to implement a remote ischemic conditioning treatment protocol.
Abstract:
A device for performing a remote ischemic conditioning treatment. The device includes an inflatable cuff and a cartridge which is a source of gas for inflating the cuff. A first valve controls the flow of gas from the cartridge to the cuff so as to maintain a predetermined pressure in the cuff during an ischemic period. A second valve allows gas to escape from the cuff during a reperfusion period of the remote ischemic conditioning treatment. A controller which may be battery-powered is used to control the opening and closing of the valves. The cartridge may contain a gas, or materials which, under certain conditions, react to produce a gas. The chemical reaction may be initiated by an electrical pulse or signal from the controller.
Abstract:
A device for performing a remote ischemic conditioning treatment. The device includes an inflatable cuff and a cartridge which is a source of gas for inflating the cuff. A first valve controls the flow of gas from the cartridge to the cuff so as to maintain a predetermined pressure in the cuff during an ischemic period. A second valve allows gas to escape from the cuff during a reperfusion period of the remote ischemic conditioning treatment. A controller which may be battery-powered is used to control the opening and closing of the valves. The cartridge may contain a gas, or materials which, under certain conditions, react to produce a gas. The chemical reaction may be initiated by an electrical pulse or signal from the controller.
Abstract:
A system for performing remote ischemic conditioning includes an inflatable cuff configured to encircle a limb of a subject and a controller removably attached to the cuff. The controller includes a pump; a manifold in fluid communication with the pump; a connector in fluid communication with the manifold and in removable fluid communication with the inflatable cuff; a pressure sensor; and a control circuit configured to implement a remote ischemic conditioning treatment protocol.