Abstract:
Described herein are embodiments of a system and a device for performing remote ischemic conditioning that may be configured to treat a subject in accordance with particular usage restrictions and/or a particular treatment protocol. More particularly, in some embodiments a RIC device may include at least two parts, an inflatable cuff to fit around a limb of a subject and a controller that operates the inflatable cuff to inflate and deflate and thus alternate between ischemia and reperfusion of the limb in accordance with a treatment protocol. The inflatable cuff may include a computer-readable storage and that storage may include usage restrictions and/or configuration settings for the controller, to configure the controller to operate the inflatable cuff in accordance with the usage restrictions and to perform a particular treatment protocol when operating the inflatable cuff.
Abstract:
A system for performing remote ischemic conditioning includes an inflatable cuff configured to encircle a limb of a subject and a controller removably attached to the cuff. The controller includes a pump; a manifold in fluid communication with the pump; a connector in fluid communication with the manifold and in removable fluid communication with the inflatable cuff; a pressure sensor; and a control circuit configured to implement a remote ischemic conditioning treatment protocol.
Abstract:
A system for performing remote ischemic conditioning includes an inflatable cuff configured to encircle a limb of a subject and a controller removably attached to the cuff. The controller includes a pump; a manifold in fluid communication with the pump; a connector in fluid communication with the manifold and in removable fluid communication with the inflatable cuff; a pressure sensor; and a control circuit configured to implement a remote ischemic conditioning treatment protocol.
Abstract:
A remote ischemic conditioning system may be integrated with other medical devices or apparatus so that cycles of remote ischemic conditioning may be performed on a patient before, during and/or after performance of another medical procedure. In one embodiment, a remote ischemic conditioning system may be integrated with a surgery table. In another embodiment, a remote ischemic conditioning system may be integrated with an automated external defibrillator, or an automated external defibrillator/monitor. Integration of the remote ischemic conditioning system with the surgical table or the automated external defibrillator allows the remote ischemic conditioning system to be powered by the power source for the table or the automated external defibrillator, and/or to be controlled by a control panel disposed on the table or the automated external defibrillator. Also, data from the controller for the remote ischemic conditioning system may be received and stored in the controller for the table or the automated external defibrillator. This data may be displayed on a monitor for the table or defibrillator and/or transmittal to a hospital or heart center.
Abstract:
A device for performing a remote ischemic conditioning treatment. The device includes an inflatable cuff and a cartridge which is a source of gas for inflating the cuff. A first valve controls the flow of gas from the cartridge to the cuff so as to maintain a predetermined pressure in the cuff during an ischemic period. A second valve allows gas to escape from the cuff during a reperfusion period of the remote ischemic conditioning treatment. A controller which may be battery-powered is used to control the opening and closing of the valves. The cartridge may contain a gas, or materials which, under certain conditions, react to produce a gas. The chemical reaction may be initiated by an electrical pulse or signal from the controller.
Abstract:
A device for performing a remote ischemic conditioning treatment. The device includes an inflatable cuff and a cartridge which is a source of gas for inflating the cuff. A first valve controls the flow of gas from the cartridge to the cuff so as to maintain a predetermined pressure in the cuff during an ischemic period. A second valve allows gas to escape from the cuff during a reperfusion period of the remote ischemic conditioning treatment. A controller which may be battery-powered is used to control the opening and closing of the valves. The cartridge may contain a gas, or materials which, under certain conditions, react to produce a gas. The chemical reaction may be initiated by an electrical pulse or signal from the controller.
Abstract:
A system for performing remote ischemic conditioning includes an inflatable cuff configured to encircle a limb of a subject and a controller removably attached to the cuff. The controller includes a pump; a manifold in fluid communication with the pump; a connector in fluid communication with the manifold and in removable fluid communication with the inflatable cuff; a pressure sensor; and a control circuit configured to implement a remote ischemic conditioning treatment protocol.