Abstract:
Compositions and methods associated with intercalating and exfoliating a sample are described herein. For example, of a method may include mixing the sample with intercalation materials. The intercalation materials are then intercalated into the sample to obtain a sample intercalated with the intercalation materials. The intercalated sample can then be exfoliated to produce an exfoliated sample.
Abstract:
A plurality of processes for producing unique end products containing elemental metals or metal oxides on and in a carbon substrate, elemental metals or metal oxides in the absence of such a carbon substrate, mixtures of elemental metals or metal oxides on and in a carbon substrate, or mixtures of elemental metals or metal oxides in the absence of such a carbon substrate, all of which processes involve the preparation of a first-step intermediate product that is a carbonaceous material appearing to be non-graphitic by X-ray diffraction standards and containing metal and halogen, which intermediate product is made from graphite fluoride and an appropriate metal halide. Among the end products are aluminum oxide fibers, elemental iron fibers, magnetic carbon fibers containing either iron or an iron-nickel alloy, and carbon containing various metals in the form of elemental metal or oxides.
Abstract:
Improved graphite fluoride fibers are produced by contact reaction between highly graphitized fibers and fluorine gas. It is preferable to intercalate the fibers with bromine or fluorine and metal fluoride prior to fluorination.These graphite fluoride fibers are bound by an epoxy. The resulting composites have high thermal conductivity, high electric resistivity, and high emissivity.
Abstract:
A plurality of processes for producing unique end products containing elemental metals or metal oxides on and in a carbon substrate, elemental metals or metal oxides in the absence of such a carbon substrate, mixtures of elemental metals or metal oxides on and in a carbon substrate, or mixtures of elemental metals or metal oxides in the absence of such a carbon substrate, all of which processes involve the preparation of a first-step intermediate product that is a carbonaceous material appearing to be non-graphitic by X-ray diffraction standards and containing metal and halogen, which intermediate product is made from graphite fluoride and an appropriate metal halide. Among the end products are aluminum oxide fibers, elemental iron fibers, magnetic carbon fibers containing either iron or an iron-nickel alloy, and carbon containing various metals in the form of elemental metal or oxides.
Abstract:
Low cost, high break elongation graphitized carbon fibers having low degree of graphitization are inert to bromine at room or higher temperatures, but are brominated at -7.degree. to 20.degree. C., and then debrominated at ambient. Repetition of this bromination-debromination process can bring the bromine content to 18%. Electrical conductivity of the brominated fibers is three times of the before-bromination value.
Abstract:
A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.
Abstract:
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
Abstract:
A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be further processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.
Abstract:
Graphite fluoride is produced from graphitized carbon. A bromine iodine mixture reacts with graphitized carbon to produce iodine intercalated graphitized carbon that is then exposed to fluorine.
Abstract:
A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.