Abstract:
Provided are field effect transistors and methods of fabricating the same. The transistor may include a substrate with an active pattern, the active pattern having a top surface and two sidewalls, a gate electrode proximal to the top surface and the sidewalls of the active pattern and crossing the active pattern, a gate spacer covering a sidewall of the gate electrode, a gate dielectric pattern at a bottom surface of the gate electrode, a source electrode on the active pattern at one side of the gate electrode, a drain electrode on the active pattern at another side of the gate electrode, and silicide patterns on surfaces of the source and drain electrodes, respectively. The gate dielectric pattern includes at least one high-k layer and the gate spacer has a dielectric constant that is smaller than that of the gate dielectric pattern.
Abstract:
A thin film deposition apparatus used to produce large substrates on a mass scale and improve manufacturing yield. The thin film deposition apparatus includes a deposition source; a first nozzle disposed at a side of the deposition source and including a plurality of first slits arranged in a first direction; a second nozzle disposed opposite to the first nozzle and including a plurality of second slits arranged in the first direction; and a barrier wall assembly including a plurality of barrier walls arranged in the first direction so as to partition a space between the first nozzle and the second nozzle.
Abstract:
A display device includes a substrate, a display unit formed on the substrate, a sealing substrate bonded to the substrate by a bonding layer surrounding the display unit, the sealing substrate comprising a complex member and an insulating member, wherein the complex member has a resin matrix and a plurality of carbon fibers and the insulator is connected to an edge of the complex member and comprises a penetration hole, a metal layer disposed at one side of the sealing substrate wherein the one side faces the substrate, and a conductive connection unit filling in the penetration hole and contacting the metal layer. The complex member and the insulator may be coupled by tongue and groovecoupling along a thickness direction of the sealing substrate where the protrusion-groove coupling structure is top-to-bottom symmetric and the insulator may have a thickness identical to that of the complex member.
Abstract:
An anisotropic conductive film (ACF) is disclosed. The ACF includes a film, an adhesive layer positioned on the film, and one or more conductive balls within the adhesive layer. The conductive balls include a first core part having a first hardness, a second core part covering the first core part and having a second hardness that is greater than the first hardness, and a conductive part covering the second core part, respectively.
Abstract:
A display device includes a wire substrate including a wire unit for driving the display device, an integrated circuit chip mounted at the wire substrate, and a pad unit extended from the wire unit to be disposed between the wire substrate and the integrated circuit chip. The pad unit is connected to the integrated circuit chip. The pad unit includes a first conductive layer extended from the wire unit, and a second conductive layer disposed on the first conductive layer. The hardness of the second conductive layer is less than the hardness of the first conductive layer.
Abstract:
A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
Abstract:
A non-volatile memory device includes field insulating layer patterns on a substrate to define an active region of the substrate, upper portions of the field insulating layer patterns protruding above an upper surface of the substrate, a tunnel insulating layer on the active region, a charge trapping layer on the tunnel insulating layer, a blocking layer on the charge trapping layer, first insulating layers on upper surfaces of the field insulating layer patterns, and a word line structure on the blocking layer and first insulating layers.
Abstract:
A non-volatile memory device includes an array of non-volatile memory cells configured to support single bit and multi-bit programming states. A control circuit is provided, which is configured to program a first page of non-volatile memory cells in the array as M-bit cells during a first programming operation and further configured to program the first page of non-volatile memory cells as N-bit cells during a second programming operation. The first and second programming operations are separated in time by at least one operation to erase the first page of non-volatile memory cells. M and N are unequal integers greater than zero.
Abstract:
A mask frame assembly includes a frame, a mask having a deposition pattern and being installable on the frame in a state of being pulled by a first tension force in a first direction, and a tension force applying portion in the mask and configured to apply a second tension force in a second direction that is perpendicular or substantially perpendicular to the first direction.
Abstract:
A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.