Abstract:
In one embodiment of the invention, a system in package (SiP) is described which includes a plurality of device components with different form factors embedded within a molding compound layer. A surface for each of the device components is coplanar with a surface of the molding compound layer, and a single redistribution layer (RDL) formed on the coplanar surfaces of the molding compound layer and the plurality of device components. An active device die is electrically bonded to the single RDL directly vertically adjacent the plurality of device components. In an embodiment, the SiP is electrically connected to a circuit board with the active device die between the single RDL and the circuit board. In an embodiment, the SiP is electrically connected to a circuit board with the active device die over the single RDL and the circuit board.
Abstract:
This disclosure relates generally to a semiconductor device and method of making the semiconductor device by pressing an electrical contact of a chip into a bonding layer on a carrier. The bonding layer is cured and coupled, at least in part, to the electrical contact. A molding layer is applied in contact with the chip and a first major surface of the bonding layer. Distribution circuitry is coupled to the electrical contact.
Abstract:
A method apparatus and material are described for radio frequency passives and antennas. In one example, an electronic component has a synthesized magnetic nanocomposite material with aligned magnetic domains, a conductor embedded within the nanocomposite material, and contact pads extending through the nanocomposite material to connect to the conductor.
Abstract:
Packaged semiconductor die and CTE-engineering die pairs and methods to form packaged semiconductor die and CTE-engineering die pairs are described. For example, a semiconductor package includes a substrate. A semiconductor die is embedded in the substrate and has a surface area. A CTE-engineering die is embedded in the substrate and coupled to the semiconductor die. The CTE-engineering die has a surface area the same and in alignment with the surface area of the semiconductor die.
Abstract:
In one embodiment of the invention, a system in package (SiP) is described which includes a plurality of device components with different form factors embedded within a molding compound layer. A surface for each of the device components is coplanar with a surface of the molding compound layer, and a single redistribution layer (RDL) formed on the coplanar surfaces of the molding compound layer and the plurality of device components. An active device die is electrically bonded to the single RDL directly vertically adjacent the plurality of device components. In an embodiment, the SiP is electrically connected to a circuit board with the active device die between the single RDL and the circuit board. In an embodiment, the SiP is electrically connected to a circuit board with the active device die over the single RDL and the circuit board.
Abstract:
Disclosed are embodiments of a substrate for an integrated circuit (IC) device. The substrate includes a core comprised of two or more discrete glass layers that have been bonded together. A separate bonding layer may be disposed between adjacent glass layers to couple these layers together. The substrate may also include build-up structures on opposing sides of the multi-layer glass core, or perhaps on one side of the core. Electrically conductive terminals may be formed on both sides of the substrate, and an IC die may be coupled with the terminals on one side of the substrate. The terminals on the opposing side may be coupled with a next-level component, such as a circuit board. One or more conductors extend through the multi-layer glass core, and one or more of the conductors may be electrically coupled with the build-up structures disposed over the core. Other embodiments are described and claimed.
Abstract:
A microelectronic die assembly. The die assembly includes a microelectronic die, and a thermally conductive element attached to the backside of the die with a thermal interface material. The thermally conductive element has lateral dimensions smaller than, substantially equal to, or larger than lateral dimensions of the die by up to a maximum amount, wherein the maximum amount is adapted to allow a mounting of the die assembly to a package substrate.
Abstract:
An embodiment of the present invention is a technique to heat spread at wafer level. A silicon wafer is thinned. A chemical vapor deposition diamond (CVDD) wafer processed. The CVDD wafer is bonded to the thinned silicon wafer to form a bonded wafer. Metallization is plated on back side of the CVDD wafer. The CVDD wafer is reflowed to flatten the back side.
Abstract:
A method and apparatus provide an integrated circuit package with improved heat dissipation and easier fabrication. The integrated circuit package includes a thinned semiconductor die attached to a heat spreader using a thermally conductive material. The thinned die reduces the thermal resistance of the die/heat spreader combination to improve heat extraction from the die as well as eliminating processing steps in fabrication. Additionally, the thinned die becomes more compliant as it takes on the thermal/mechanical properties of the heat spreader to reduce stress-induced cracking of the die.
Abstract:
A multi-chip package may include at least one integrated circuit die disposed on a substrate, and a local heat spreader is thermally coupled with the die. A global heat spreader is thermally coupled with this local heat spreader. The global heat spreader may also be coupled with one or more other local heat spreaders that are each coupled with another die disposed in the multi-chip package. Other embodiments are described and may be claimed.