Abstract:
A chromatic dispersion compensation device selectively delays a respective portion of spectral sections of each respective optical channel of an optical WDM input signal to compensate each optical channel for dispersion compensation, and includes a spatial light modulator having a micromirror device with a two-dimensional array of micromirrors. The micromirrors tilt or flip between first and second positions in a nulldigitalnull fashion in response to a control signal provided by a controller in accordance with a switching algorithm and an input command. A collimator, diffraction gratings, and Fourier lens collectively collimate, disperse and focus the optical input channels onto the array of micromirrors. Each optical channel is focused onto micromirrors of the micromirror device, which effectively pixelates the optical channels. To compensate an optical channel for chromatic dispersion, a portion of the spectral sections of each channel is delayed a desired time period by tilting an array of mirrors (i.e., spectral array) disposed in each spectral section at different spatial positions on the micromirror device.
Abstract:
A reconfigurable multifunctional optical device has an optical arrangement for receiving an optical signal, each having optical bands or channels, and a spatial light modulator for reflecting the at least one optical signal provided thereon. The optical arrangement features a free optics configuration with a light dispersion element for spreading each optical signal into one or more respective optical bands or channels for performing separate optical functions on each optical signal. The spatial light modulator includes a micro-mirror device with an array of micro-mirrors, and the respective optical bands or channels reflect off respective micro-mirrors. The free optics configuration includes a common set of optical components for performing each separate optical function on each optical signal. The separate optical functions reflect off separate non-overlapping areas on the spatial light modulator. The separate optical functions include optical switching, conditioning or monitoring functions.
Abstract:
A method and device for pressure sensing using an optical fiber having a core, a cladding and a Bragg grating imparted in the core for at least partially reflecting an optical signal at a characteristic wavelength. The cladding has two variation regions located on opposite sides of the Bragg grating to allow attachment mechanisms to be disposed against the optical fiber. The attachment mechanisms are mounted to a pressure sensitive structure so as to allow the characteristic wavelength to change according to pressure in an environment. In particular, the variation region has a diameter different from the cladding diameter, and the attachment mechanism comprises a ferrule including a front portion having a profile substantially corresponding to at least a portion of the diameter of the variation region and a butting mechanism which holds the ferrule against the optical fiber.
Abstract:
A reconfigurable optical blocking filter deletes a desired optical channel(s) from an optical WDM input signal, and includes a spatial light modulator having a micro-mirror device with a two-dimensional array of micro-mirrors that tilt between first and second positions in a nulldigitalnull fashion in response to a control signal provided by a controller in accordance with a switching algorithm and an input command. A collimators, diffraction grating, and Fourier lens, collectively collimate, separate and focus the optical input channels onto the array of micro-mirrors. The optical channel is focused on the micro-mirrors onto a plurality of micro-mirrors of the micro-mirror device, which effectively pixelates the optical channels. To delete an input channel of the optical input signal, micro-mirrors associated with each desired input channel are tilted to reflect the desired input channel away from the return path.
Abstract:
A reconfigurable optical add/drop multiplexer (ROADM) selectively drops and/or adds desired optical channel(s) from and/or to an optical WDM input signal. The ROADM includes a spatial light modulator having a micro-mirror device with an array of micro-mirrors, and a light dispersion element. The micro-mirrors tilt between two positions in response to a control signal provided by a controller in accordance with a switching algorithm and input command. Collimators, diffraction gratings and Fourier lens collectively collimate, separate and focus the optical input channels and optical add channels onto the array of micro-mirrors. Each optical channel is focused on micro-mirrors of the micro-mirror device, which effectively pixelates the optical channels. To drop and/or add an optical channel to the optical input signal, mirrors associated with each desired optical channel are tilted away from a return path to the second position.
Abstract:
A reconfigurable optical channel monitor selects and determines a parameter of desired optical channel(s) from and/or to an optical WDM input signal. The OCM includes a spatial light modulator having a micro-mirror device with a two-dimensional array of micro-mirrors that tilt between first and second positions in response to a control signal from a controller in accordance with a switching algorithm and an input command. A collimator, diffraction grating, and Fourier lens collectively converge the optical input channels onto the micro-mirrors array. The optical channel is focused onto a plurality of micro-mirrors. To select each input channel, a group of micro-mirrors associated with each desired input channel is tilted to reflect the desired input channel back along the return path to a photodetector and processing unit to determine a parameter of the selected input signal.
Abstract:
A reconfigurable optical interleaver/deinterleaver device combines/separates a pair of optical input signals from and/or to an optical WDM input signal. The interleaver device includes a spatial light modulator having a micro-mirror device with a two-dimensional array of micro-mirrors that flip between first and second positions in a nulldigitalnull fashion in response to a control signal provided by a controller in accordance with a switching algorithm and an input command. A pair of collimators, diffraction gratings and Fourier lens collectively collimate, separate and focus the optical input channels and optical add channels onto the array of micro-mirrors. Each optical channel is focused on a plurality of micro-mirrors of the micro-mirror device, which effectively pixelates the optical channels.
Abstract:
An optical cross-connect is provided that selectively switches at least one desired optical channel between a pair of optical WDM input signals. The cross-connect includes a spatial light modulator having a micro-mirror device with a two-dimensional array of micro-mirrors. The micro-mirrors tilt or flip between a first and second position in a nulldigitalnull fashion in response to a control signal provided by a controller in accordance with a switching algorithm and an input command. A pair of collimators diffraction gratings and Fourier lens collectively collimate, separate and focus the optical input channels and optical add channels onto the array of micro-mirrors. Each optical channel is focused on the micro-mirrors onto a plurality of micro-mirrors of the micro-mirror device, which effectively pixelates the optical channels. The optical channels have a cross-section (e.g., circular) to project as much of the beam as possible over the greatest number of micro-mirrors, while keeping the optical channels separated by a predetermined spacing. To selectively switch an optical channel between the optical input signals, a group of mirrors associated with each desired optical channel is tilted away from a return path to the second position. In an exemplary embodiment, the group of micro-mirrors reflects substantially all the light of each respective optical channel and does not reflect the light of any adjacent channels.
Abstract:
A method and device for tuning an optical device including an optical fiber having a core, a cladding and a Bragg grating imparted in the core to partially reflect an optical signal at a reflection wavelength characteristic of the spacing of the Bragg grating. The cladding has two variation regions located on opposite sides of the Bragg grating to allow attachment mechanisms to be disposed against the optical fiber. The attachment mechanisms are mounted to a frame so as to allow the spacing of the Bragg grating to be changed by an actuator which tunes the reflection wavelength. In particular, the variation region has a diameter different from the cladding diameter, and the attachment mechanism comprises a ferrule including a front portion having a profile substantially corresponding to diameter of the variation region and a butting mechanism butting the ferrule against the optical fiber.