Abstract:
An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.
Abstract:
An opto-electronic assembly is provided comprising a substrate (generally of silicon or glass) for supporting a plurality of interconnected optical and electrical components. A layer of sealing material is disposed to outline a defined peripheral area of the substrate. A molded glass lid is disposed over and bonded to the substrate, where the molded glass lid is configured to create a footprint that matches the defined peripheral area of the substrate. The bottom surface of the molded glass lid includes a layer of bonding material that contacts the substrate's layer of sealing material upon contact, creating a bonded assembly. In one form, a wafer level assembly process is proposed where multiple opto-electronic assemblies are disposed on a silicon wafer and multiple glass lids are molded in a single sheet of glass that is thereafter bonded to the silicon wafer.
Abstract:
Techniques for coupling light from a waveguide array to a single mode fiber array are described. In an embodiment, lateral misalignment of an array of focusing lenses and an array of optical fiber ferrules held into alignment by a lens holder sub-assembly is compensated by tilting the lens holder sub-assembly with respect to the propagation axis of the light being coupled by the lens holder-subassembly. Since the amount of tilt can be adjusted according to the degree of lateral misalignment, lens holder sub-assemblies manufactured with varying degrees of misalignment may be utilized to couple light into single mode fiber-optic cable. In addition, the same technique can also be used to compensate for other defects as well, such as angular errors in manufacturing or placement of a turning mirror or prism used to direct light into the lens holder sub-assembly.
Abstract:
Techniques for coupling light from a waveguide array to a single mode fiber array are described. In an embodiment, lateral misalignment of an array of focusing lenses and an array of optical fiber ferrules held into alignment by a lens holder sub-assembly is compensated by tilting the lens holder sub-assembly with respect to the propagation axis of the light being coupled by the lens holder-subassembly. Since the amount of tilt can be adjusted according to the degree of lateral misalignment, lens holder sub-assemblies manufactured with varying degrees of misalignment may be utilized to couple light into single mode fiber-optic cable. In addition, the same technique can also be used to compensate for other defects as well, such as angular errors in manufacturing or placement of a turning mirror or prism used to direct light into the lens holder sub-assembly.
Abstract:
An apparatus for providing self-aligned optical coupling between an opto-electronic substrate and a fiber array, where the substrate is enclosed by a transparent lid such that the associated optical signals enter and exit the arrangement through the transparent lid. The apparatus takes the form of a two-part connectorized fiber array assembly where the two pieces uniquely mate to form a self-aligned configuration. A first part, in the form of a plate, is attached to the transparent lid in the area where the optical signals pass through. The first plate includes a central opening with inwardly-tapering sidewalls surrounding its periphery. A second plate is also formed to include a central opening and has a lower protrusion with inwardly-tapering sidewalls that mate with the inwardly-tapering sidewalls of the first plate to form the self-aligned connectorized fiber array assembly. The fiber array is then attached to the second plate in a self-aligned fashion.
Abstract:
An arrangement for providing passive alignment of optical components on a common substrate uses a set of reference cavities, where each optical device is positioned within a separate reference cavity. The reference cavities are formed to have a predetermined depth, with perimeters slightly larger than the footprint of their associated optical components. The reference cavity includes at least one right-angle corner that is used as a registration corner against which a right-angle corner of an associated optical component is positioned. The placement of each optical component in its own reference cavity allows for passive optical alignment to be achieved by placing each component against its predefined registration corner.
Abstract:
A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.