Abstract:
Techniques for network communications are disclosed. These techniques include receiving a cryptographically generated device identifier (CGDI) and a public key relating to a wireless station (STA). The techniques further include determining a first hash based on decrypting the CGDI using the public key, and validating the first hash for an access network. The techniques further include identifying the STA in the access network using the CGDI based on binding the CGDI to a session associated with the STA and the access network.
Abstract:
Systems and methods for controlling the power of small cells in a coverage area includes obtaining signal strength measurements of wireless signals received from a plurality of small cells in a defined coverage area by identifying signal strength at a plurality of locations near the perimeter of the coverage area, and determining a revised transmit power of the small cells based on the determined signal strength (a) to maintain a minimum threshold of received signal while reducing the average power within the coverage area, or (b) to reduce leakage outside the perimeter of the coverage area relative to a desired threshold.
Abstract:
A method of controlling performance of a wireless device is performed by a node that is in electronic communication with a cellular network. The node includes a processor, a non-transitory memory, and a network interface. The method includes receiving a performance value characterizing a performance of a communication channel between a wireless device and a wireless access point. In some implementations, the wireless device and the cellular network are associated with different radio access technologies (RATs). The method includes determining whether the performance value breaches a performance criterion for the wireless device. The method includes adjusting a first amount of data transmitted to the wireless device from a base station of the cellular network and a second amount of data transmitted to the wireless device from the wireless access point. In some implementations, the combined first and second amounts of data satisfy the performance criterion for the wireless device.
Abstract:
A method for improving performance in a residential/community WiFi network is implemented on a self-optimizing network (SON) server and includes: receiving current configuration details and local performance statistics from SON clients installed in access points (APs) in the residential/community WiFi networks, where at least one of the APs is a residential AP configured to provide WiFi connectivity to both authorized users of the residential AP and a community of WiFi users not associated with the residential AP, analyzing at least the current configuration details and local performance statistics to identify performance issues in the residential/community WiFi network, determining remedial actions based on the analyzing, and instructing the access points to perform the remedial actions via the SON clients.
Abstract:
Systems and methods for small cell idle mode mobility include receiving, at a first small cell of a preconfigured cluster of small cells, a mobility area update request from a user equipment (UE). The method can also include registering location information of the UE with a small cell gateway, and retrieving a core network periodic timer for the UE from a mobility server. If certain conditions are met, the first small cell forwards the mobility area update request to a core network via the small cell gateway. Otherwise, the method can include the first small cell updating the location information of the UE with the mobility server, generating a locally-generated mobility area update accept message, and sending a locally generated mobility area update accept message to the UE along with a local periodic timer instructing the UE to send another mobility area update request when the local periodic timer expires.
Abstract:
Federation policy exchange is provided in response to receiving a sharing query from an Access Point (AP) indicating that an associated wireless network supports federated identities with data sharing, determining whether the sharing query is within sharing preferences; and in response to determining that the sharing query is within the sharing preferences, transmitting, to the AP, a positive response for identity sharing that authorizes collection and sharing of identity data with at least one entity identified in a sharing policy for the associated wireless network. In various embodiments, federation policy exchange includes transmitting a support notification, via an AP, indicating support for federated identities with data sharing within a wireless network associated with the AP; and in response to receiving a first identify sharing preference from a User Equipment (UE) that indicates that negotiation is preferred, transmitting a sharing policy for the wireless network to the UE.
Abstract:
A method includes linking, at an access node, a first media control access (MAC) address of a device to an identifier of the device to establish a communication session between the access node and the device and during the communication session, receiving, at the access node, an indication of a change of the first MAC address to a second MAC address. The method also includes linking, at the access node, the second MAC address to the first MAC address and the identifier and receiving, at the access node, a communication from the device using the second MAC address while maintaining the communication session.
Abstract:
Techniques for wireless communications are disclosed. The techniques include generating a provisioning domain (PVD) identifier by associating a roaming consortium organization identifier (RCOI), relating to an identity federation comprising an identity provider (IDP), with the PVD. The techniques further include providing PVD configuration information from the IDP to a wireless station (STA) associated with the IDP, using the PVD identifier. The techniques further include applying one or more configuration policies at the STA based on the PVD configuration information.
Abstract:
Embodiments herein describe techniques for dynamically negotiating an SLA between a roaming device and a VN in an identity federation. Instead of an IDP having to individually negotiate with a VN to decide on an SLA before a user device roams to the VN, the parties can dynamically negotiate the SLA after the user device has detected the VN (but before the device is permitted to connect or associate with the VN). In one embodiment, when a roaming user device comes within wireless range of a VN, the roaming device receives an advertisement from the VN that indicates the current SLA (or SLAs) offered by the VN. The roaming device can compare this offered SLA to a stored SLA in an identity profile the device received from the IDP to determine whether to accept the offer. In another embodiment, the SLA is instead negotiated between VN and the IDP.
Abstract:
In one example, an apparatus is provided that includes a processor configured to receive, in a first wireless network, an identifier of a base station in a second wireless network, and to determine an identity of a first device in the second wireless network. The apparatus is configured to transmit the identifier of the base station to the second wireless network.