Abstract:
This disclosure describes a band-limited beamforming microphone array made by the augmenting a beamforming microphone array with non-beamforming microphones. The band-limited beamforming microphone array includes a plurality of first microphones configured as a beamforming microphone array to resolve first audio input signals within a first frequency range. The band-limited array further includes one or more additional microphone configured to resolve second audio input signals within a restricted second frequency range such that the additional microphones are coupled to the beamforming microphone array. In addition, the band-limited array includes augmented beamforming that processes audio signals from the beamforming microphone array and the additional microphone(s), where the augmented beamforming combines the beamformed first audio input signal with the resolved and restricted second audio input signals to create an audio signal within a band-limited frequency range.
Abstract:
This disclosure describes a band-limited beamforming microphone array made by augmenting a beamforming microphone array with non-beamforming microphones that includes: a plurality of first microphones configured as a beamforming microphone array to resolve first audio input signals within a first frequency range; one or more additional microphones configured to resolve second audio input signals within a restricted second frequency range; and an augmented beamforming module that includes a processor that executes software program steps to: receive the resolved first audio signals from the beamforming microphone array; receive the resolved and restricted second audio input signals; perform beamforming on the received and resolved first audio input signal; and combine the beamformed first audio input signal with the resolved and restricted second audio input signals to create an audio signal within a band-limited frequency range.
Abstract:
This disclosure describes an apparatus and method of an embodiment of an invention that is a band-limited beamforming microphone array with acoustic echo cancellation that includes: a plurality of first microphones configured as a beamforming microphone array to resolve first audio input signals within a first frequency range, the beamforming microphone array includes acoustic echo cancellation; one or more additional microphone(s) configured to resolve second audio input signals within a restricted second frequency range such that the additional microphone(s) are coupled to the beamforming microphone array; augmented beamforming that processes audio signals from the beamforming microphone array and the additional microphone(s).
Abstract:
Embodiments of the present disclosure include an apparatus (116) configured to perform beamforming on multiple audio input signals. The apparatus (116) includes a first plurality of microphones (302, 502) configured to resolve first audio input signals within a first frequency range. The apparatus (116) also includes at least one microphone (504) configured to resolve second audio input signals within a second frequency range. A lowest frequency in the first frequency range is greater than a lowest frequency in the second frequency range.
Abstract:
This disclosure describes a conferencing system with spatial rendering of audio data. The conferencing system includes a local conferencing device that includes a plurality of microphones, an audio encoder, and a spatial encoder that are associated with a local endpoint. The conferencing system further includes a remote conferencing device that includes a plurality of speakers, an audio decoder, and a spatial renderer that are associated with the remote endpoint. The spatial renderer is configured to superimpose a coordinate system for the plurality of speakers and a coordinate system for the plurality of microphones during spatial rendering of the audio data.
Abstract:
Embodiments of the present disclosure include an apparatus (116) configured to perform beamforming on multiple audio input signals. The apparatus (116) includes a first plurality of microphones (302, 502) configured to resolve first audio input signals within a first frequency range. The apparatus (116) also includes at least one microphone (504) configured to resolve second audio input signals within a second frequency range. A lowest frequency in the first frequency range is greater than a lowest frequency in the second frequency range.
Abstract:
This disclosure describes an invention that that mutes specific talkers using at least one beamforming microphone array 102 that is configured to generate N audio signals 108 where each audio signal is associated with a spatial pickup pattern 130, the microphone array(s) 102 are located in a room 200; a processor 104 and memory 105 operably coupled to the microphone array 102, the processor 104 configured to execute the following steps: (a) selectively mute or unmute an individual talker the room with a mute function 106 that controls whether to mute or unmute the individual talker T1-T7 that is picked up by one or more of the individual audio signals, the mute function 106 includes speech learning that learns to identify different talkers in real time to allow the mute function 106 to identify transitions from one talker to another talker in the room 200, (b) output an audio signal 110 based on the selective muting of the talkers T1-T7 in the room 200.
Abstract:
This disclosure describes a conferencing system with spatial rendering of audio data. The conferencing system includes a local conferencing device that includes a plurality of microphones, an audio encoder, and a spatial encoder that are associated with a local endpoint. The conferencing system further includes a remote conferencing device that includes a plurality of speakers, an audio decoder, and a spatial renderer that are associated with the remote endpoint. The spatial renderer is configured to superimpose a coordinate system for the plurality of speakers and a coordinate system for the plurality of microphones during spatial rendering of the audio data.