Abstract:
A mass spectrometer includes: an accelerator for receiving ions travelling in a drift direction and accelerating the ions in an acceleration direction orthogonal to the drift direction; a detector downstream of the accelerator with respect to the drift direction; and an ion mirror assembly intermediate the accelerator and the detector. The ion mirror assembly includes at least a first ion mirror and a second ion mirror spaced apart from each other in the acceleration direction. The accelerator, detector, and ion mirror assembly provide a folded ion path between the accelerator and the detector for separating the ions according to their mass-to-charge ratio so that a flight time of the ions is substantially independent of ion energy. The first and second ion mirrors each apply an electrostatic potential to the ions that is curved in both the drift direction and a lateral direction orthogonal to both the drift and acceleration directions.
Abstract:
A linear ion trap traps a plurality of charged particles in a charged particle trap including first and second electrode mirrors arranged along an axis at opposite ends of the particle trap, the electrode mirrors being capable, when voltage is applied thereto, of creating respective electric fields configured to reflect charged particles causing oscillation of the particles between the mirrors. The method includes: (a) introducing into the charged particle trap the plurality of charged particles, the particles having a spread in the oscillation time of the particles per oscillation; (b) applying voltage to the electrode mirrors during step (a) to induce a relatively weak self-bunching of the charged particles; and (c) after the plurality of charged particles has been introduced into the charged particle trap, waiting for a time period ΔT and then changing the voltage so as to induce a relatively stronger self-bunching among the charged particles.