Abstract:
A dissociation device fragments a precursor ion, producing at least two different product ions with overlapping m/z values in the dissociation device. The dissociation device applies an AC voltage and a DC voltage creating a pseudopotential that traps ions below a threshold m/z including the at least two product ions. The dissociation device receives a charge reducing reagent that causes the trapped at least two product ions to be charge reduced until their m/z values increase above the threshold m/z set by the AC voltage. The increase in the m/z values of the at least two product ions decreases their overlap. The at least two product ions with increased m/z values are transmitted to another device for subsequent mass analysis by applying the DC voltage to the dissociation device relative to a DC voltage applied to the other device.
Abstract:
In an accelerating tube which uses a conductive insulator, there is a possibility that the dopant concentration on a surface of the conductive insulator becomes non-uniform so that the surface resistance of the conductive insulator becomes non-uniform. Accordingly, a circumferential groove is formed on the inner surface of the conductive insulator accelerating tube in plural stages, and metal is metalized along inner portions of the grooves. When the resistance of a specific portion on the surface of the accelerating tube differs from the resistance of an area around the specific portion, the potential of the metalized region on the inner surface of the accelerating tube becomes a fixed value and hence, the potential distribution on the inner surface of the accelerating tube in the vertical direction can be maintained substantially equal without regard to the circumferential direction.
Abstract:
A time-of-flight mass spectrometer (1) comprises an ion source a segmented linear ion device (10) for receiving sample ions supplied by the ion source and a time-of-flight mass analyser for analysing ions ejected from the segmented device. A trapping voltage is applied to the segmented device to trap ions initially into a group of two or more adjacent segments and subsequently to trap them in a region of the segmented device shorter than the group of segments. The trapping voltage may also be effective to provide a uniform trapping field along the length of the device (10).
Abstract:
An improved ion clearing electrode assembly for use in an electron beam production and control assembly which is especially suitable for use in a scanning electron beam computed tomography X-ray scanning system. The assembly uses a vacuum sealed housing chamber which is evacuated of internal gases and in which the electron beam is generated and propagated. Normally residual gas within the chamber interacts with the electrons of the beam to produce positive ions which have the affect of neutralizing the space charge of the electron beam and thereby causing focusing difficulties and destabilization of the beam. The ion collecting electrodes herein are an improvement of those disclosed in the co-pending Rand U.S. patent application Ser. No. 434,252, now U.S. Pat. No. 4,521,900. The electrodes are designed to extract the ions and reduce their neutralizing effect while maintaining a precisely uniform electric field and therefore beam optical aberrations are minimized. In addition, the electrode provides flexibility in the variation of parameters which effect ion extraction and the neutralization fraction.
Abstract:
A dissociation device fragments a precursor ion, producing at least two different product ions with overlapping m/z values in the dissociation device. The dissociation device applies an AC voltage and a DC voltage creating a pseudopotential that traps ions below a threshold m/z including the at least two product ions. The dissociation device receives a charge reducing reagent that causes the trapped at least two product ions to be charge reduced until their m/z values increase above the threshold m/z set by the AC voltage. The increase in the m/z values of the at least two product ions decreases their overlap. The at least two product ions with increased m/z values are transmitted to another device for subsequent mass analysis by applying the DC voltage to the dissociation device relative to a DC voltage applied to the other device.
Abstract:
An ion trap device is disclosed with a method of manufacturing thereof including a substrate, first and second RF electrode rails, first and second DC electrodes on either upper or lower side of substrate, and a laser penetration passage connected to ion trapping zone from outer side of the first or second side of substrate. The substrate includes ion trapping zone in space defined by first and second sides of substrate separated by a distance with reference to width direction of ion trap device. The first and second RF electrode rails are arranged in parallel longitudinally of ion trap device. The first RF electrode is arranged on upper side of first side, the second DC electrode is arranged on lower side of first side, the first DC electrode is arranged on upper side of second side, and the second RF electrode rail is arranged on lower side of second side.
Abstract:
A filter for filtering macro-particles from a plasma beam, having a bended duct for carriage of the plasma beam, the bended duct comprising an intermediate portion connected at one end to an inlet portion having a longitudinal axis disposed on an inlet plane and at another opposite end to an outlet portion having a longitudinal axis disposed on an outlet plane. The inlet portion allows the plasma beam containing macro-particles to travel toward the intermediate portion in an incident direction and the outlet portion allows the plasma beam to travel from the intermediate portion in an emergent direction. The intermediate portion is configured to deviate the incident direction to the emergent direction at an angle of more than 90° and thereby remove macro-particles from the plasma beam as it passes through the intermediate portion. The inlet plane and outlet plane are disposed at an offset angle from each other.
Abstract:
A ballistic charge transport device including an edge electron emitter defining an elongated central opening therethrough with a receiving terminal (e.g. an anode) at one end of the opening and a getter at the other end. A suitable potential is applied between the emitter and the receiving terminal to attract emitted electrons to the receiving terminal and a different suitable potential is applied between the emitter and the getter so that contaminants, such as ions and other undesirable particles, are accelerated toward and absorbed by the getter.
Abstract:
A cold-cathode ion source includes a specially shaped hollow anode and specially shaped anode-cathode insulators to preclude the buildup of short-circuiting bridges of sputtered cathode material. When used with solid feed material, the source can also include an oven-anode having cavities for vaporizing the solid feed material and passages connecting the cavities to the bore of the anode. The geometry of the oven-anode provides an increasing temperature gradient from the cavities to the bore that minimizes condensation of vaporized feed material that could block the ports.
Abstract:
The present invention relates to a device designed to prevent fine particles produced in a vacuum system from being adsorbed to a semiconductor substrate and a sample or prevent the fine particles from being adsorbed to a mask in a lithography device using the vacuum system and, more specifically, to an extreme ultraviolet lithography device not using a membrane type pellicle. An embodiment of a particle transfer blocking device according to the present invention comprises: a vacuum chamber in which an accommodation part is formed; and a barrier module which is provided in the vacuum chamber and divides the accommodation part of the chamber into a first region and a second region, wherein the barrier module is not a physical barrier but an electrical potential barrier serving to prevent predetermined particles located in the first region from transferring to the second region.