Abstract:
A pseudo random dot pattern that is created easily by a geometric approach. The pseudo random dot pattern includes a first oblique lattice region and a second oblique lattice region repeatedly disposed at predetermined intervals in a y direction on an xy plane, a plurality of dot arrangement axes a1 on which dots are disposed at a predetermined pitch in an x direction being arranged in a b direction obliquely crossing the x direction at an angle α in the first oblique lattice region, a plurality of dot arrangement axes a2 on which dots are disposed at a predetermined pitch in the x direction being arranged in a c direction reverse to the b direction with respect to the x direction in the second oblique lattice region.
Abstract:
A filler-containing film has a structure in which fillers are held in a binder resin layer. The average particle diameter of the fillers is 1 to 50 μm, the total thickness of the resin layer is 0.5 times or more and 2 times or less the average particle diameter of the fillers, and the ratio Lq/Lp of, relative to the minimum inter-filler distance Lp at one end of the filler-containing film in a long-side direction, a minimum inter-filler distance Lq at the other end at least 5 m away from the one end in the film long-side direction is 1.2 or less. The fillers are preferably arranged in a lattice form.
Abstract:
An anisotropic conductive film can reduce the conduction resistance of an anisotropic conductively connected connection structure, and can reliably suppress the occurrence of short-circuits. The film has a structure wherein insulating particle-including conductive particles, wherein insulating particles adhere to the surfaces of conductive particles, are distributed throughout an insulating resin layer. In the insulating particle-including conductive particles, a number of insulating particles in contact with the conductive particles with respect to a film thickness direction is lower than with respect to a film planar direction. Preferably, a number of the insulating particles overlapping with the conductive particles when one of a front and rear film surface of the anisotropic conductive film is viewed in plan view is lower than a number of the insulating particles overlapping with the conductive particles when the other of the film surfaces is viewed in plan view.
Abstract:
A filler-containing film that can be precisely pressed to an electronic component with lower thrust is a film having a filler distributed layer in which fillers are regularly disposed in a resin layer, wherein an area occupancy rate of the fillers in a plan view is 25% or less, a ratio La/D between a layer thickness La of the resin layer and a particle diameter D of the fillers is 0.3 or more and 1.3 or less, and a proportion by number of the fillers present in a non-contact state with each other is 95% or more with respect to the entire fillers. The proportion by number of the fillers present in a non-contact state with each other is preferably 99.5% or more with respect to the entire fillers.
Abstract:
A filler disposition film that can use a commercially procurable filler material having good particle diameter uniformity, enables high positional precision of the filler disposition, can support even an increase in the surface area, and has a prescribed filler regularly disposed in a long resin film. Moreover, the rate of consistency of disposition of the filler in the filler disposition film in rectangular areas of a prescribed size having a length of 1000 times or more the average particle diameter of the prescribed filler, and a width of 0.2 mm or greater is 90% or greater. Such a rectangular area has a long-side direction that is substantially parallel to the long-side direction of the filler disposition film, and a widthwise direction that is substantially parallel to a short-side direction of the filler disposition film. The average particle diameter of the regularly disposed filler is from 0.4 μm to 100 μm.
Abstract:
In a connection structure, a first electronic component having a first terminal pattern and a second electronic component having a second terminal pattern different in size and pitch from the first terminal pattern are anisotropically conductively connected by an anisotropic conductive film to a third electronic component having a terminal pattern corresponding to each of the first terminal pattern and the second terminal pattern. The anisotropic conductive film has at least one of a region in which conductive particles are regularly arranged, and a plurality of regions in which at least one of a number density, a particle diameter, and a hardness of the conductive particles in one region is different from that in the other region.
Abstract:
An anisotropic conductive film includes an insulating adhesive layer and conductive particles disposed thereon. Arrangement axes of the conductive particles having a particle pitch extend in a widthwise direction of the film, and the axes are sequentially arranged with an axis pitch in a lengthwise direction of the film. The particle pitch, axis pitch of the axes, and an angle θ of the axes relative the widthwise direction of the film are determined according to external shapes of terminals so 3 to 40 conductive particles are present on each terminal when a terminal arrangement region of an electronic component is superimposed on the film so a lengthwise direction of each terminal is aligned with the widthwise direction of the film. By using the film, stable connection reliability is obtained and an excessive increase in the density of the conductive particles is suppressed even in the connection of fine pitches.
Abstract:
An anisotropic electrically conductive film that is suitable for use in fine-pitch FOG connections and COG connections and that also can reduce increases in production costs associated with increasing the electrically conductive particle density. The anisotropic electrically conductive film includes an electrically insulating adhesive layer and electrically conductive particles disposed within the electrically insulating adhesive layer. The anisotropic electrically conductive film has electrically conductive particle disposition regions that are disposed in a manner corresponding to the arrangement of terminals of electronic components to be connected. The electrically conductive particle disposition regions are formed periodically in the longitudinal direction of the anisotropic electrically conductive film. The anisotropic electrically conductive film also has buffer regions in which no electrically conductive particles are disposed that are formed between adjacent electrically conductive particle disposition regions for connection.
Abstract:
An anisotropic conductive film of the present invention has a structure in which conductive particles are dispersed or arranged in a regular pattern in an insulating binder layer. A low-adhesive region having a lower adhesive strength than that of the insulating binder layer is formed at a part of a surface of the anisotropic conductive film. The low-adhesive region is a region where a recess portion formed in the insulating binder layer is filled with a low-adhesive resin.
Abstract:
An anisotropic conductive film has a first connection layer and a second connection layer formed on a surface of the first connection layer. The first connection layer is a photopolymerized resin layer, and the second connection layer is a thermo- or photo-cationically, anionically, or radically polymerizable resin layer. Conductive particles for anisotropic conductive connection are arranged on a surface of the first connection layer on a side of the second connection layer so that the embedding ratio of the conductive particles in the first connection layer is 80% or more, or 1% or more and 20% or less.