Abstract:
An ion exchange chromatographic packing material is described that includes support resin particles and a copolymer grafted to the support resin particles. The copolymer includes polymerized functional monomers such as a first ion exchange group monomer and a second ion exchange group monomer. At a first pH, the first ion exchange group monomer is configured to have a first charge at a first pH, and the second ion exchange group monomer is configured to have a net neutral charge. At a second pH, the first ion exchange group monomer is configured to have the first charge at a second pH, and the second ion exchange group monomer is configured to have a second charge at the second pH where the first charge and second charge both have a same polarity.
Abstract:
An anion exchange stationary phase includes a negatively charged substrate particle, a base condensation polymer layer, a crosslinked ethanolamine condensation polymer, and a glycidol condensation layer. The crosslinked ethanolamine condensation polymer layer can be covalently attached to the base condensation polymer layer. The crosslinked ethanolamine condensation polymer layer can be formed by a condensation reaction product of a polyepoxide compound and ethanolamine. The glycidol condensation layer can be formed by the treatment of glycidol. The anion exchange stationary phase are suitable for separating a variety of haloacetic acids and common inorganic anions in a single chromatographic run in less than 20 to 35 minutes.
Abstract:
An anion exchange stationary phase includes a negatively charged substrate particle, a base condensation polymer layer, a crosslinked ethanolamine condensation polymer, and a glycidol condensation layer. The crosslinked ethanolamine condensation polymer layer can be covalently attached to the base condensation polymer layer. The crosslinked ethanolamine condensation polymer layer can be formed by a condensation reaction product of a polyepoxide compound and ethanolamine. The glycidol condensation layer can be formed by the treatment of glycidol. The anion exchange stationary phase are suitable for separating a variety of haloacetic acids and common inorganic anions in a single chromatographic run in less than 20 to 30 minutes.
Abstract:
An ion exchange chromatographic packing material is described that includes support resin particles and a copolymer grafted to the support resin particles. The copolymer includes polymerized functional monomers such as a first ion exchange group monomer and a second ion exchange group monomer. At a first pH, the first ion exchange group monomer is configured to have a first charge at a first pH, and the second ion exchange group monomer is configured to have a net neutral charge. At a second pH, the first ion exchange group monomer is configured to have the first charge at a second pH, and the second ion exchange group monomer is configured to have a second charge at the second pH where the first charge and second charge both have a same polarity.