Abstract:
Provided is a method for manufacturing an optical fiber base material, comprising manufacturing a soot deposition body having a core with a high refractive index at a center thereof, using VAD or OVD; dehydrating the soot deposition body within a heating furnace, with a temperature that does not vitrify the soot deposition body and in a helium atmosphere containing chlorine; after the dehydration, forming a core rod by vitrifying the soot deposition body at a temperature that vitrifies the soot deposition body, in a helium atmosphere; and applying cladding on the outside of the core rod. The helium atmosphere in the heating furnace when vitrifying the soot deposition body includes a gas containing a fluorine compound, and concentration of the fluorine in the atmospheric gas is in a range of 0.1 mol % to 10 mol %.
Abstract:
Provided is a quartz glass manufacturing method that involves using one or more burners, supplying hydrogen and oxygen to the one or more burners to generate an oxyhydrogen flame, introducing a silicide into the oxyhydrogen flame, forming a porous base material by depositing silicon dioxide generated from a flame hydrolysis reaction with the silicide, and heating and sintering the porous base material to form transparent glass, the method comprising supplying hydrogen that is stored or made at a normal temperature to the one or more burners; controlling a hydrogen flow rate using a measurement apparatus or control apparatus that performs measurement based on heat capacity of a gas; vaporizing liquid hydrogen stored in a low-temperature storage chamber, and supplying the vaporized liquid hydrogen to the one or more burners as backup hydrogen; switching from the hydrogen to the backup hydrogen; and when switching, adjusting the hydrogen flow rate to a value obtained by multiplying the hydrogen flow rate immediately after switching by a predetermined correction coefficient.
Abstract:
A method for manufacturing an optical fiber preform that includes preparing a glass cylinder with inner and outer surfaces forming at least part of a cladding portion are repeatedly polished, and a glass core rod that includes a core portion having a higher refractive index than the cladding portion; and inserting the core rod into the glass cylinder and heating the glass cylinder and core rod to form a single body. The repeated polishing of the inner surface of the glass cylinder includes passing pure water that does not contain a cutting fluid over the inner surface for at least the final polishing. The polishing is preferably performed using a polishing cloth to which are affixed diamond abrasive grains. The glass core rod and the glass cylinder are preferably formed of composite quartz glass.
Abstract:
An optical fiber base material manufacturing method includes: supplying oxygen, hydrogen, and silicide to a core deposition burner; depositing silicon dioxide; adjusting a drawing up speed so that a deposition tip position remains at the same position in accordance with growth of a porous base material; calculating an average of the drawing up speed at each preset time interval; calculating a difference of the calculated average from a preset value of the drawing up speed; correcting a flow rate of silicon tetrachloride when the supplied hydrogen is hydrogen produced or stored at normal temperature, and correcting a flow rate of hydrogen when the supplied hydrogen is hydrogen obtained by vaporizing liquid hydrogen, where when correcting the flow rate of hydrogen, a flow rate of hydrogen supplied to a cladding deposition burner is also corrected in a ratio of before and after the correction of the flow rate of the hydrogen.
Abstract:
There is provided an apparatus for supplying a hydrogen gas to a quartz glass manufacturing apparatus including a burner that generates an oxyhydrogen flame when supplied with the hydrogen gas, where the apparatus includes: a first hydrogen supply system that supplies a hydrogen gas in which isotopes are in equilibrium; a second hydrogen supply system that supplies a hydrogen gas in which isotopes are out of equilibrium; a flow rate control section that includes: a valve that changes a flow rate of the hydrogen gas to be supplied to the burner; a first flow rate measuring section that measures the flow rate of the hydrogen gas to be supplied to the burner by measuring a heat capacity; and a control section that controls the valve in such a manner that a measured value obtained by the first flow rate measuring section approaches a set value input from outside; a second flow rate measuring section that measures the flow rate of the hydrogen gas to be supplied to the burner by measuring a different factor than the heat capacity; and a set value compensating section that compensates the set value by multiplying the set value by a ratio between the measured value obtained by the first flow rate measuring section and a measured value obtained by the second flow rate measuring section.
Abstract:
Included are monitoring a loss value of the optical fiber with respect to propagation light having a wavelength at or in the vicinity of 1714 nm after the optical fiber is exposed to deuterium; and ending the exposure of the optical fiber to the deuterium when a change quantity of the loss value has exceeded a predetermined value. The monitoring of the loss value is pursued by, while exposing the optical fiber to an atmosphere that contains deuterium, causing propagation light having a wavelength at or in the vicinity of 1714 nm to be incident from one end of the optical fiber, monitoring the propagation light emitted from the other end of the optical fiber, and measuring a loss value of the optical fiber. According to this, it is possible to manufacture an optical fiber having an excellent hydrogen resistance characteristic assuredly and at low cost.