Abstract:
An apparatus and method of using the same are provided for generating a gradient of particles within a microfluidic device. The microfluidic device includes a channel having an input and an output. The channel is filled with a predetermined fluid. Thereafter, particles from a source pass through a porous membrane into the input of the channel. A second membrane is provided adjacent the output of the channel to minimize convection therein. A sink communicates with the output of the channel. The source/sink combination creates a pseudo-steady state in the channel wherein the concentration of particles at a point does not vary dramatically with time.
Abstract:
A microfluidic device and method is provided for handheld diagnostics and assays. A first substance is frozen in a cryopreservation fluid in a first well of a lid. The lid includes a first surface communicating with a first port of the first well and a second surface communicating with a second port of the first well. A porous membrane is affixed to the first surface so as to overlap the first port and a non-porous membrane is affixed to the second surface so as to overlap the second port. The first substance may be dialytically freed from the cryopreservation fluid at a user desired time. Thereafter, the lid may be moved from a first position wherein the lid is spaced from a base to a second position wherein the lid is adjacent the channel in the base such that the first substance communicates with the input of the channel.
Abstract:
Methods of isolating weakly interacting molecules in a fluidic sample using an immiscible phase filtration technique are disclosed. A complex is formed between a solid phase substrate, a molecule immobilized on the solid phase substrate, and at least one target molecule present in the fluidic sample. The complex is transferred into an immiscible phase by applying an external force to the solid phase substrate. The methods eliminate the need for complex and time consuming washing steps.
Abstract:
The present invention provides liquid crystal-based devices and methods for bioagent detection. In certain aspects, the present invention is directed to devices and methods utilizing liquid crystals and membranes containing polymerized targets that can report the presence of bioagents including, but not limited to, enzymes, antibodies, and toxins.
Abstract:
A microfluidic device and method is provided for handheld diagnostics and assays. The device includes a base having outer surface and a channel therethough for receiving fluid therein. The channel has input and output ports communicating with the outer surface. A lid is also provided. The lid has an outer surface, a first well having a port communicating with the outer surface of the lid, and a second well having a port communicating with the outer surface. The lid moveable between a first disengaged position and a second engaged position wherein the first port of the lid is adjacent the input port of the channel and the second port is adjacent the output port of the channel.
Abstract:
A micro device and method are provided for examining and testing a slice of a biological object, such as brain tissue. The micro device includes a body defining a chamber and a channel in communication with the chamber. A stimulation fluid flows axially along a flow path in the channel and engages a user selectable region of the slice. An array of electrodes in the chamber engages the slice and allows for the multi-channel electrical recording and stimulation of the slice at each of the electrode sites.
Abstract:
A compact active vapor compression cycle heat transfer device. The device of the invention includes a flexible diaphragm serving as the compressive member in a layered compressor. The compressor is stimulated by capacitive electrical action and drives the relatively small refrigerant charge for the device through a closed loop defined by the compressor, an evaporator and a condenser. The evaporator and condenser include microchannel heat exchange elements to respectively draw heat from an atmosphere on a cool side of the device and expel heat into an atmosphere on a hot side of the device. The overall structure and size of the device is similar to microelectronic packages, and it may be combined to operate with similar devices in useful arrays.
Abstract:
Methods of isolating weakly interacting molecules in a fluidic sample using an immiscible phase filtration technique are disclosed. A complex is formed between a solid phase substrate, a molecule immobilized on the solid phase substrate, and at least one target molecule present in the fluidic sample. The complex is transferred into an immiscible phase by applying an external force to the solid phase substrate. The methods eliminate the need for complex and time consuming washing steps.
Abstract:
A device and method are provided for determining the wear of a sole of a shoe. The device includes first and second sensors receivable in the sole of the shoe. The sensors are axially spaced and generate signals in response to corresponding impact forces acting thereon. A control circuit is connectable to the first and second sensors. The control circuit compares the difference between the first and second signals to a threshold and generates an alert signal in response to the difference between the first and second signal meeting the threshold.
Abstract:
A micro device is provided that includes a body defining a chamber for receiving fluid. A rotational element is disposed in the chamber for acting on the fluid. The rotational element is rotatable about an axis in response to a rotating magnetic field. The micro device further includes a clutch mechanism having a first disengaged configuration and a second engaged configuration wherein the clutch mechanism engages the rotational element and prevents rotation of the same.