Abstract:
Disclosed are systems and methods for generating wide-field optical coherence tomography angiography (OCTA) images. In embodiments, multiple OCTA scans of a sample are automatically acquired at overlapping locations. The systems and methods include functionality to adaptively control the scanning procedure such that eye blink and eye motion events are detected in real time and accounted for during 3D scan acquisition. Also disclosed are methods for detecting and correcting motion-related artifacts in OCTA datasets which allow for the longer scan times over larger fields of view required for wide-field imaging. These methods may include division of en face angiogram images into a set of motion-free parallel strips, and application of gross and fine registration methods to align overlapping strips into a motion-corrected composite image. A series of overlapping motion-corrected composite images may be combined into a larger montage to enable wide-field OCTA imaging using multiple OCTA scans.
Abstract:
Disclosed are methods of imaging vascular flow using optical coherence tomography. The methods involve calculating an OCT phase difference and an OCT phase gradient from interference fringes acquired from B-scans. The methods can be implemented in a split-spectrum embodiment to enhance the signal to noise ratio of vascular flow images. The methods also obviate the need for correction of bulk motion and laser trigger jitter-induced phase artifacts.
Abstract:
Disclosed herein are methods and systems for aligning swept-source optical coherence tomography (SS-OCT) spectral interferograms to a reference spectral interferogram based on signal information (e.g., amplitude or phase) at a fixed-pattern noise location to reduce residual fixed-pattern noise and improve the phase stability of SS-OCT systems.
Abstract:
Disclosed herein are methods and systems for aligning swept-source optical coherence tomography (SS-OCT) spectral interferograms to a reference spectral interferogram based on signal information (e.g., amplitude or phase) at a fixed-pattern noise location to reduce residual fixed-pattern noise and improve the phase stability of SS-OCT systems.
Abstract:
Methods of applying OCT angiography are disclosed. In particular, methods of detecting, visualizing and measuring the extent of retinal neovascularization are disclosed. Further disclosed are methods measuring retinal nonperfusion area and choriocapillaris defect area.
Abstract:
A method for detecting glaucoma in a subject based on spatial frequency analysis of the inner limiting membrane (ILM) as obtained from optical coherence tomography (OCT) image data is disclosed. Based on the spatial frequency content of the analyzed ILM profile, a quantity called the Retinal surface contour variability (RSCV) is calculated and the presence or absence of a glaucoma condition is determined based on the RSCV magnitude.
Abstract:
A data transmission method for a data transmission system including a first device and a second device is disclosed. The method comprises the steps of transmitting a clock signal to synchronize the first device and the second device; transmitting a mode signal from the first device to the second device, wherein the mode signal indicates a transmission mode between the first device and the second device; and transmitting a serial data between the first device and the second device based on the clock signal, wherein the length of the serial data is determined based on the transmission mode.
Abstract:
A method for detecting glaucoma in a subject based on spatial frequency analysis of the inner limiting membrane (ILM) as obtained from optical coherence tomography (OCT) image data is disclosed. Based on the spatial frequency content of the analyzed ILM profile, a quantity called the Retinal surface contour variability (RSCV) is calculated and the presence or absence of a glaucoma condition is determined based on the RSCV magnitude.
Abstract:
Methods of performing en face Doppler total retinal blood flow measurement are disclosed. The methods involve obtaining a set of structural OCT scans; calculating a noise-reduced set of Doppler phase shift images by dividing the full spectrum OCT fringe data into a set of narrower filtered frequency bands for phase shift calculation; removing bulk motion along a depth direction; detecting retinal vessels in the set of images; applying a phase unwrapping algorithm to the images; classifying the vessels as veins and arteries; and calculating total retinal blood flow based on that classification.
Abstract:
A heat-dissipating structure for LED lamp has a lamp cover, and a power conversion device and a ceramic substrate mounted inside the lamp cover. The lamp cover has multiple heat-dissipating holes and multiple mounting ears. Each mounting ear is formed on an edge of one of the heat-dissipating holes and is bent inwardly with the heat-dissipating hole uncovered. The ceramic substrate is mounted on the mounting ears. The ceramic substrate has multiple LEDs mounted thereon, absorbs heat generated when the LEDs emit light and conducts the heat to the lamp cover through the mounting ears. The heat generated when the LEDs are lit and the power conversion converts a mains power is transferred to a heat convection space between the ceramic substrate and the lamp cover, and is further dissipated to an ambient environment, thereby achieving fast heat dissipation and a light LED lamp without additional heat sink thereon.