Abstract:
A solution is provided that includes a non-aqueous organic solvent within which a solute has been dissolved. A thermal-fluid ejection mechanism is provided that has fluid-ejection nozzles and that is capable of thermally ejecting the solution. A device medium is provided that has a three-dimensional surface on which the solution is to be ejected. The fluid-ejection nozzles of the thermal fluid-ejection mechanism are controlled to eject the solution onto the three-dimensional surface of the device medium in accordance with a desired pattern.
Abstract:
Imaging apparatus and methods of homogenizing ink are described. In one implementation an imaging apparatus includes an ink supply to provide ink to be used in printing, and a printhead to apply the ink during printing. A conduit system couples the ink supply and the printhead in fluid flowing relation. A pump is operably coupled to the conduit system. In operation, the pump causes the ink to circulate between the ink supply and the printhead. A timing device measures an idle-time since the pump was last in operation. A controller receives the idle-time measurement from the timing device, and actuates the pump when a selected idle-time is reached. In another implementation, a method for homogenizing ink includes providing a pump, then automatically actuating the pump to homogenize ink within an ink delivery system each time the ink delivery system has been resting for a selected idle-time.
Abstract:
The present invention is directed to an integrated cartridge assembly for delivery of the biocompatible fluids to a subject, in which the device comprises an integrated cartridge including a fluid reservoir for housing the biocompatible fluid, a dispenser permanently and fluidically connected to the fluid reservoir, and configured for dispensing the biocompatible fluid to a manifold which is fluidically and removably connectable to the cartridge.
Abstract:
Implantable medical devices such as stents, methods of making medical devices, and systems for making medical devices are disclosed herein. In one exemplary embodiment, medical device includes a stent that is coated at least on a portion of one surface by an ink-jet device.
Abstract:
A solution is provided that includes a non-aqueous organic solvent within which a solute has been dissolved. A thermal-fluid ejection mechanism is provided that has fluid-ejection nozzles and that is capable of thermally ejecting the solution. A device medium is provided that has a three-dimensional surface on which the solution is to be ejected. The fluid-ejection nozzles of the thermal fluid-ejection mechanism are controlled to eject the solution onto the three-dimensional surface of the device medium in accordance with a desired pattern.
Abstract:
A volumetric fluid dispensing device can include a fluid reservoir having at least one flexible wall and a dispensing reservoir oriented above the fluid reservoir. The dispensing reservoir can have an overflow return fluidly connected to the fluid reservoir such that the dispensing reservoir holds a measured volume of fluid. A reservoir conduit can be fluidly connected to the fluid reservoir and the dispensing reservoir to allow excess fluid to return from the overflow to the fluid reservoir. A dispensing conduit can also be fluidly connected to the dispensing reservoir to allow fluid to exit the dispensing reservoir. A mechanical wall actuator can be operatively associated with the walls for controllably flexing at least a portion of the walls sufficient to force fluid from the fluid reservoir to the dispensing reservoir via the reservoir conduit.
Abstract:
A pump having a rotary portion which compels the movement of a fluid by peristaltic compression of resilient tubing containing the fluid includes a roller assembly having at least one roller mounted in the rotary portion of the pump for contact with the resilient tubing. The roller has a range of rotation in contact with the tubing during pump operation. A roller control mechanism is adapted and constructed to stop the roller at a single, predetermined location on the tubing when the pump operation is stopped.
Abstract:
Apparatus and methods are provided. A supply of ink within a flexible bag is located apart from a printer. A fluid conduit couples the supply of ink to the printer by way of a connecting head. The connecting head includes a pump driven by a mechanical actuator of the printer. Operation of the pump causes a flow of ink from the flexible bag to a printhead of the printer. Pump failure is detected and interpreted as an out-of-ink condition, and user notification and/or cessation of printing operations are automatically performed.
Abstract:
Apparatus and methods are provided. A supply of ink within a flexible bag is located apart from a printer. A fluid conduit couples the supply of ink to the printer by way of a connecting head. The connecting head includes a pump driven by a mechanical actuator of the printer. Operation of the pump causes a flow of ink from the flexible bag to a printhead of the printer. Pump failure is detected and interpreted as an out-of-ink condition, and user notification and/or cessation of printing operations are automatically performed.
Abstract:
A fluid delivery component includes a shell with a bladder. The bladder bag may have at least one dimension greater than a corresponding dimension of the shell. The bladder may include a plurality of nested bags and/or may include a pillow-shaped bag.